MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Unicode version

Theorem divalglem8 14040
Description: Lemma for divalg 14043. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem8  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    S( r)    K( r)    X( r)    Y( r)

Proof of Theorem divalglem8
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2 ssrab2 3570 . . . . . . . . . . . . 13  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
31, 2eqsstri 3519 . . . . . . . . . . . 12  |-  S  C_  NN0
4 nn0sscn 10807 . . . . . . . . . . . 12  |-  NN0  C_  CC
53, 4sstri 3498 . . . . . . . . . . 11  |-  S  C_  CC
65sseli 3485 . . . . . . . . . 10  |-  ( Y  e.  S  ->  Y  e.  CC )
75sseli 3485 . . . . . . . . . 10  |-  ( X  e.  S  ->  X  e.  CC )
8 divalglem8.2 . . . . . . . . . . . . . 14  |-  D  e.  ZZ
9 divalglem8.3 . . . . . . . . . . . . . 14  |-  D  =/=  0
10 nnabscl 13140 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
118, 9, 10mp2an 672 . . . . . . . . . . . . 13  |-  ( abs `  D )  e.  NN
1211nnzi 10895 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  ZZ
13 zmulcl 10919 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
1412, 13mpan2 671 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
1514zcnd 10977 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
16 subadd 9828 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  (
( Y  -  X
)  =  ( K  x.  ( abs `  D
) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
176, 7, 15, 16syl3an 1271 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  X  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
18173com12 1201 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
19 eqcom 2452 . . . . . . . 8  |-  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( K  x.  ( abs `  D ) )  =  ( Y  -  X ) )
20 eqcom 2452 . . . . . . . 8  |-  ( ( X  +  ( K  x.  ( abs `  D
) ) )  =  Y  <->  Y  =  ( X  +  ( K  x.  ( abs `  D
) ) ) )
2118, 19, 203bitr3g 287 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
22213adant1r 1222 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
23223adant2r 1224 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
24 breq1 4440 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  <  ( abs `  D )  <->  Y  <  ( abs `  D ) ) )
25 eleq1 2515 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
2624, 25imbi12d 320 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
273sseli 3485 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  z  e.  NN0 )
28 elnn0z 10884 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN0  <->  ( z  e.  ZZ  /\  0  <_ 
z ) )
2927, 28sylib 196 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
z  e.  ZZ  /\  0  <_  z ) )
3029anim1i 568 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
( z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D ) ) )
31 df-3an 976 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) )  <->  ( (
z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D
) ) )
3230, 31sylibr 212 . . . . . . . . . . . . 13  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) )
33 0z 10882 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
34 elfzm11 11760 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <-> 
( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) ) )
3533, 12, 34mp2an 672 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 ... ( ( abs `  D
)  -  1 ) )  <->  ( z  e.  ZZ  /\  0  <_ 
z  /\  z  <  ( abs `  D ) ) )
3632, 35sylibr 212 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
3736ex 434 . . . . . . . . . . 11  |-  ( z  e.  S  ->  (
z  <  ( abs `  D )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
3826, 37vtoclga 3159 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
39 eleq1 2515 . . . . . . . . . . 11  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4039biimpd 207 . . . . . . . . . 10  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  ->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4138, 40sylan9 657 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) )  -> 
( Y  <  ( abs `  D )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
4241impancom 440 . . . . . . . 8  |-  ( ( Y  e.  S  /\  Y  <  ( abs `  D
) )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( X  +  ( K  x.  ( abs `  D
) ) )  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
43423ad2ant2 1019 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
44 breq1 4440 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  <  ( abs `  D )  <->  X  <  ( abs `  D ) ) )
45 eleq1 2515 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4644, 45imbi12d 320 . . . . . . . . . . . 12  |-  ( z  =  X  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
4746, 37vtoclga 3159 . . . . . . . . . . 11  |-  ( X  e.  S  ->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4847imp 429 . . . . . . . . . 10  |-  ( ( X  e.  S  /\  X  <  ( abs `  D
) )  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
498, 9divalglem7 14039 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
5048, 49sylan 471 . . . . . . . . 9  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
51503adant2 1016 . . . . . . . 8  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
5251con2d 115 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  ->  -.  K  =/=  0 ) )
5343, 52syld 44 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  -.  K  =/=  0
) )
54 df-ne 2640 . . . . . . 7  |-  ( K  =/=  0  <->  -.  K  =  0 )
5554con2bii 332 . . . . . 6  |-  ( K  =  0  <->  -.  K  =/=  0 )
5653, 55syl6ibr 227 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  K  =  0 ) )
5723, 56sylbid 215 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  K  =  0 ) )
58 oveq1 6288 . . . . . . . . . . 11  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  ( 0  x.  ( abs `  D ) ) )
5911nncni 10553 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  CC
6059mul02i 9772 . . . . . . . . . . 11  |-  ( 0  x.  ( abs `  D
) )  =  0
6158, 60syl6eq 2500 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  0 )
6261eqeq1d 2445 . . . . . . . . 9  |-  ( K  =  0  ->  (
( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  0  =  ( Y  -  X
) ) )
6362biimpac 486 . . . . . . . 8  |-  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  /\  K  =  0 )  -> 
0  =  ( Y  -  X ) )
64 subeq0 9850 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
656, 7, 64syl2anr 478 . . . . . . . . 9  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
66 eqcom 2452 . . . . . . . . 9  |-  ( ( Y  -  X )  =  0  <->  0  =  ( Y  -  X
) )
67 eqcom 2452 . . . . . . . . 9  |-  ( Y  =  X  <->  X  =  Y )
6865, 66, 673bitr3g 287 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( 0  =  ( Y  -  X )  <-> 
X  =  Y ) )
6963, 68syl5ib 219 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7069ad2ant2r 746 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  /\  K  = 
0 )  ->  X  =  Y ) )
71703adant3 1017 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7271expd 436 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  -> 
( K  =  0  ->  X  =  Y ) ) )
7357, 72mpdd 40 . . 3  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y )
)
74733expia 1199 . 2  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  ->  X  =  Y ) ) )
7574an4s 826 1  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   {crab 2797   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   CCcc 9493   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    < clt 9631    <_ cle 9632    - cmin 9810   NNcn 10543   NN0cn0 10802   ZZcz 10871   ...cfz 11683   abscabs 13049    || cdvds 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11093  df-rp 11232  df-fz 11684  df-seq 12090  df-exp 12149  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051
This theorem is referenced by:  divalglem9  14041
  Copyright terms: Public domain W3C validator