MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem8 Structured version   Unicode version

Theorem divalglem8 13913
Description: Lemma for divalg 13916. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem8  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Distinct variable groups:    D, r    N, r
Allowed substitution hints:    S( r)    K( r)    X( r)    Y( r)

Proof of Theorem divalglem8
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 divalglem8.4 . . . . . . . . . . . . 13  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
2 ssrab2 3585 . . . . . . . . . . . . 13  |-  { r  e.  NN0  |  D  ||  ( N  -  r
) }  C_  NN0
31, 2eqsstri 3534 . . . . . . . . . . . 12  |-  S  C_  NN0
4 nn0sscn 10796 . . . . . . . . . . . 12  |-  NN0  C_  CC
53, 4sstri 3513 . . . . . . . . . . 11  |-  S  C_  CC
65sseli 3500 . . . . . . . . . 10  |-  ( Y  e.  S  ->  Y  e.  CC )
75sseli 3500 . . . . . . . . . 10  |-  ( X  e.  S  ->  X  e.  CC )
8 divalglem8.2 . . . . . . . . . . . . . 14  |-  D  e.  ZZ
9 divalglem8.3 . . . . . . . . . . . . . 14  |-  D  =/=  0
10 nnabscl 13117 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ZZ  /\  D  =/=  0 )  -> 
( abs `  D
)  e.  NN )
118, 9, 10mp2an 672 . . . . . . . . . . . . 13  |-  ( abs `  D )  e.  NN
1211nnzi 10884 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  ZZ
13 zmulcl 10907 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( K  x.  ( abs `  D ) )  e.  ZZ )
1412, 13mpan2 671 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  ZZ )
1514zcnd 10963 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  ( K  x.  ( abs `  D ) )  e.  CC )
16 subadd 9819 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC  /\  ( K  x.  ( abs `  D ) )  e.  CC )  ->  (
( Y  -  X
)  =  ( K  x.  ( abs `  D
) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
176, 7, 15, 16syl3an 1270 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  X  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
18173com12 1200 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  =  Y ) )
19 eqcom 2476 . . . . . . . 8  |-  ( ( Y  -  X )  =  ( K  x.  ( abs `  D ) )  <->  ( K  x.  ( abs `  D ) )  =  ( Y  -  X ) )
20 eqcom 2476 . . . . . . . 8  |-  ( ( X  +  ( K  x.  ( abs `  D
) ) )  =  Y  <->  Y  =  ( X  +  ( K  x.  ( abs `  D
) ) ) )
2118, 19, 203bitr3g 287 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
22213adant1r 1221 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  Y  e.  S  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
23223adant2r 1223 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) ) )
24 breq1 4450 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  <  ( abs `  D )  <->  Y  <  ( abs `  D ) ) )
25 eleq1 2539 . . . . . . . . . . . 12  |-  ( z  =  Y  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
2624, 25imbi12d 320 . . . . . . . . . . 11  |-  ( z  =  Y  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
273sseli 3500 . . . . . . . . . . . . . . . 16  |-  ( z  e.  S  ->  z  e.  NN0 )
28 elnn0z 10873 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN0  <->  ( z  e.  ZZ  /\  0  <_ 
z ) )
2927, 28sylib 196 . . . . . . . . . . . . . . 15  |-  ( z  e.  S  ->  (
z  e.  ZZ  /\  0  <_  z ) )
3029anim1i 568 . . . . . . . . . . . . . 14  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
( z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D ) ) )
31 df-3an 975 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) )  <->  ( (
z  e.  ZZ  /\  0  <_  z )  /\  z  <  ( abs `  D
) ) )
3230, 31sylibr 212 . . . . . . . . . . . . 13  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  (
z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) )
33 0z 10871 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
34 elfzm11 11745 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  ZZ  /\  ( abs `  D )  e.  ZZ )  -> 
( z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <-> 
( z  e.  ZZ  /\  0  <_  z  /\  z  <  ( abs `  D
) ) ) )
3533, 12, 34mp2an 672 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 ... ( ( abs `  D
)  -  1 ) )  <->  ( z  e.  ZZ  /\  0  <_ 
z  /\  z  <  ( abs `  D ) ) )
3632, 35sylibr 212 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  z  <  ( abs `  D
) )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
3736ex 434 . . . . . . . . . . 11  |-  ( z  e.  S  ->  (
z  <  ( abs `  D )  ->  z  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
3826, 37vtoclga 3177 . . . . . . . . . 10  |-  ( Y  e.  S  ->  ( Y  <  ( abs `  D
)  ->  Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
39 eleq1 2539 . . . . . . . . . . 11  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  <->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4039biimpd 207 . . . . . . . . . 10  |-  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( Y  e.  ( 0 ... (
( abs `  D
)  -  1 ) )  ->  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
4138, 40sylan9 657 . . . . . . . . 9  |-  ( ( Y  e.  S  /\  Y  =  ( X  +  ( K  x.  ( abs `  D ) ) ) )  -> 
( Y  <  ( abs `  D )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
4241impancom 440 . . . . . . . 8  |-  ( ( Y  e.  S  /\  Y  <  ( abs `  D
) )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D ) ) )  ->  ( X  +  ( K  x.  ( abs `  D
) ) )  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
43423ad2ant2 1018 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  -> 
( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
44 breq1 4450 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  <  ( abs `  D )  <->  X  <  ( abs `  D ) ) )
45 eleq1 2539 . . . . . . . . . . . . 13  |-  ( z  =  X  ->  (
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  <->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4644, 45imbi12d 320 . . . . . . . . . . . 12  |-  ( z  =  X  ->  (
( z  <  ( abs `  D )  -> 
z  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) )  <->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) ) )
4746, 37vtoclga 3177 . . . . . . . . . . 11  |-  ( X  e.  S  ->  ( X  <  ( abs `  D
)  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) ) )
4847imp 429 . . . . . . . . . 10  |-  ( ( X  e.  S  /\  X  <  ( abs `  D
) )  ->  X  e.  ( 0 ... (
( abs `  D
)  -  1 ) ) )
498, 9divalglem7 13912 . . . . . . . . . 10  |-  ( ( X  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D
)  -  1 ) ) ) )
5048, 49sylan 471 . . . . . . . . 9  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
51503adant2 1015 . . . . . . . 8  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) ) ) )
5251con2d 115 . . . . . . 7  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( X  +  ( K  x.  ( abs `  D ) ) )  e.  ( 0 ... ( ( abs `  D )  -  1 ) )  ->  -.  K  =/=  0 ) )
5343, 52syld 44 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  -.  K  =/=  0
) )
54 df-ne 2664 . . . . . . 7  |-  ( K  =/=  0  <->  -.  K  =  0 )
5554con2bii 332 . . . . . 6  |-  ( K  =  0  <->  -.  K  =/=  0 )
5653, 55syl6ibr 227 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( Y  =  ( X  +  ( K  x.  ( abs `  D
) ) )  ->  K  =  0 ) )
5723, 56sylbid 215 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  K  =  0 ) )
58 oveq1 6289 . . . . . . . . . . 11  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  ( 0  x.  ( abs `  D ) ) )
5911nncni 10542 . . . . . . . . . . . 12  |-  ( abs `  D )  e.  CC
6059mul02i 9764 . . . . . . . . . . 11  |-  ( 0  x.  ( abs `  D
) )  =  0
6158, 60syl6eq 2524 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  x.  ( abs `  D ) )  =  0 )
6261eqeq1d 2469 . . . . . . . . 9  |-  ( K  =  0  ->  (
( K  x.  ( abs `  D ) )  =  ( Y  -  X )  <->  0  =  ( Y  -  X
) ) )
6362biimpac 486 . . . . . . . 8  |-  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  /\  K  =  0 )  -> 
0  =  ( Y  -  X ) )
64 subeq0 9841 . . . . . . . . . 10  |-  ( ( Y  e.  CC  /\  X  e.  CC )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
656, 7, 64syl2anr 478 . . . . . . . . 9  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( Y  -  X )  =  0  <-> 
Y  =  X ) )
66 eqcom 2476 . . . . . . . . 9  |-  ( ( Y  -  X )  =  0  <->  0  =  ( Y  -  X
) )
67 eqcom 2476 . . . . . . . . 9  |-  ( Y  =  X  <->  X  =  Y )
6865, 66, 673bitr3g 287 . . . . . . . 8  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( 0  =  ( Y  -  X )  <-> 
X  =  Y ) )
6963, 68syl5ib 219 . . . . . . 7  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7069ad2ant2r 746 . . . . . 6  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  /\  K  = 
0 )  ->  X  =  Y ) )
71703adant3 1016 . . . . 5  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( ( K  x.  ( abs `  D
) )  =  ( Y  -  X )  /\  K  =  0 )  ->  X  =  Y ) )
7271expd 436 . . . 4  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  -> 
( K  =  0  ->  X  =  Y ) ) )
7357, 72mpdd 40 . . 3  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) )  /\  K  e.  ZZ )  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y )
)
74733expia 1198 . 2  |-  ( ( ( X  e.  S  /\  X  <  ( abs `  D ) )  /\  ( Y  e.  S  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X
)  ->  X  =  Y ) ) )
7574an4s 824 1  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  ( X  <  ( abs `  D
)  /\  Y  <  ( abs `  D ) ) )  ->  ( K  e.  ZZ  ->  ( ( K  x.  ( abs `  D ) )  =  ( Y  -  X )  ->  X  =  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2818   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801   NNcn 10532   NN0cn0 10791   ZZcz 10860   ...cfz 11668   abscabs 13026    || cdivides 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028
This theorem is referenced by:  divalglem9  13914
  Copyright terms: Public domain W3C validator