MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Unicode version

Theorem divalglem6 13932
Description: Lemma for divalg 13937. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1  |-  A  e.  NN
divalglem6.2  |-  X  e.  ( 0 ... ( A  -  1 ) )
divalglem6.3  |-  K  e.  ZZ
Assertion
Ref Expression
divalglem6  |-  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4  |-  K  e.  ZZ
21zrei 10882 . . 3  |-  K  e.  RR
3 0re 9608 . . 3  |-  0  e.  RR
42, 3lttri2i 9710 . 2  |-  ( K  =/=  0  <->  ( K  <  0  \/  0  < 
K ) )
5 divalglem6.2 . . . . . . . . 9  |-  X  e.  ( 0 ... ( A  -  1 ) )
6 0z 10887 . . . . . . . . . 10  |-  0  e.  ZZ
7 divalglem6.1 . . . . . . . . . . 11  |-  A  e.  NN
87nnzi 10900 . . . . . . . . . 10  |-  A  e.  ZZ
9 elfzm11 11761 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( X  e.  ( 0 ... ( A  -  1 ) )  <-> 
( X  e.  ZZ  /\  0  <_  X  /\  X  <  A ) ) )
106, 8, 9mp2an 672 . . . . . . . . 9  |-  ( X  e.  ( 0 ... ( A  -  1 ) )  <->  ( X  e.  ZZ  /\  0  <_  X  /\  X  <  A
) )
115, 10mpbi 208 . . . . . . . 8  |-  ( X  e.  ZZ  /\  0  <_  X  /\  X  < 
A )
1211simp3i 1007 . . . . . . 7  |-  X  < 
A
1311simp1i 1005 . . . . . . . . 9  |-  X  e.  ZZ
1413zrei 10882 . . . . . . . 8  |-  X  e.  RR
157nnrei 10557 . . . . . . . 8  |-  A  e.  RR
162, 15remulcli 9622 . . . . . . . 8  |-  ( K  x.  A )  e.  RR
1714, 15, 16ltadd1i 10119 . . . . . . 7  |-  ( X  <  A  <->  ( X  +  ( K  x.  A ) )  < 
( A  +  ( K  x.  A ) ) )
1812, 17mpbi 208 . . . . . 6  |-  ( X  +  ( K  x.  A ) )  < 
( A  +  ( K  x.  A ) )
192renegcli 9892 . . . . . . . 8  |-  -u K  e.  RR
207nnnn0i 10815 . . . . . . . . . 10  |-  A  e. 
NN0
2120nn0ge0i 10835 . . . . . . . . 9  |-  0  <_  A
22 lemulge12 10417 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  -u K  e.  RR )  /\  ( 0  <_  A  /\  1  <_  -u K
) )  ->  A  <_  ( -u K  x.  A ) )
2322an4s 824 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( -u K  e.  RR  /\  1  <_  -u K ) )  ->  A  <_  ( -u K  x.  A ) )
2415, 21, 23mpanl12 682 . . . . . . . 8  |-  ( (
-u K  e.  RR  /\  1  <_  -u K )  ->  A  <_  ( -u K  x.  A ) )
2519, 24mpan 670 . . . . . . 7  |-  ( 1  <_  -u K  ->  A  <_  ( -u K  x.  A ) )
26 lt0neg1 10070 . . . . . . . . 9  |-  ( K  e.  RR  ->  ( K  <  0  <->  0  <  -u K ) )
272, 26ax-mp 5 . . . . . . . 8  |-  ( K  <  0  <->  0  <  -u K )
28 znegcl 10910 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
291, 28ax-mp 5 . . . . . . . . . 10  |-  -u K  e.  ZZ
30 zltp1le 10924 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  -u K  e.  ZZ )  ->  ( 0  <  -u K  <->  ( 0  +  1 )  <_  -u K
) )
316, 29, 30mp2an 672 . . . . . . . . 9  |-  ( 0  <  -u K  <->  ( 0  +  1 )  <_  -u K )
32 0p1e1 10659 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3332breq1i 4460 . . . . . . . . 9  |-  ( ( 0  +  1 )  <_  -u K  <->  1  <_  -u K )
3431, 33bitri 249 . . . . . . . 8  |-  ( 0  <  -u K  <->  1  <_  -u K )
3527, 34bitri 249 . . . . . . 7  |-  ( K  <  0  <->  1  <_  -u K )
362recni 9620 . . . . . . . . . . . 12  |-  K  e.  CC
3715recni 9620 . . . . . . . . . . . 12  |-  A  e.  CC
3836, 37mulneg1i 10014 . . . . . . . . . . 11  |-  ( -u K  x.  A )  =  -u ( K  x.  A )
3938oveq2i 6306 . . . . . . . . . 10  |-  ( A  -  ( -u K  x.  A ) )  =  ( A  -  -u ( K  x.  A )
)
4016recni 9620 . . . . . . . . . . 11  |-  ( K  x.  A )  e.  CC
4137, 40subnegi 9910 . . . . . . . . . 10  |-  ( A  -  -u ( K  x.  A ) )  =  ( A  +  ( K  x.  A ) )
4239, 41eqtri 2496 . . . . . . . . 9  |-  ( A  -  ( -u K  x.  A ) )  =  ( A  +  ( K  x.  A ) )
4342breq1i 4460 . . . . . . . 8  |-  ( ( A  -  ( -u K  x.  A )
)  <_  0  <->  ( A  +  ( K  x.  A ) )  <_ 
0 )
4419, 15remulcli 9622 . . . . . . . . 9  |-  ( -u K  x.  A )  e.  RR
45 suble0 10078 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( -u K  x.  A
)  e.  RR )  ->  ( ( A  -  ( -u K  x.  A ) )  <_ 
0  <->  A  <_  ( -u K  x.  A )
) )
4615, 44, 45mp2an 672 . . . . . . . 8  |-  ( ( A  -  ( -u K  x.  A )
)  <_  0  <->  A  <_  (
-u K  x.  A
) )
4743, 46bitr3i 251 . . . . . . 7  |-  ( ( A  +  ( K  x.  A ) )  <_  0  <->  A  <_  (
-u K  x.  A
) )
4825, 35, 473imtr4i 266 . . . . . 6  |-  ( K  <  0  ->  ( A  +  ( K  x.  A ) )  <_ 
0 )
4914, 16readdcli 9621 . . . . . . 7  |-  ( X  +  ( K  x.  A ) )  e.  RR
5015, 16readdcli 9621 . . . . . . 7  |-  ( A  +  ( K  x.  A ) )  e.  RR
5149, 50, 3ltletri 9724 . . . . . 6  |-  ( ( ( X  +  ( K  x.  A ) )  <  ( A  +  ( K  x.  A ) )  /\  ( A  +  ( K  x.  A )
)  <_  0 )  ->  ( X  +  ( K  x.  A
) )  <  0
)
5218, 48, 51sylancr 663 . . . . 5  |-  ( K  <  0  ->  ( X  +  ( K  x.  A ) )  <  0 )
5349, 3ltnlei 9717 . . . . 5  |-  ( ( X  +  ( K  x.  A ) )  <  0  <->  -.  0  <_  ( X  +  ( K  x.  A ) ) )
5452, 53sylib 196 . . . 4  |-  ( K  <  0  ->  -.  0  <_  ( X  +  ( K  x.  A
) ) )
55 elfzle1 11701 . . . 4  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  ->  0  <_  ( X  +  ( K  x.  A ) ) )
5654, 55nsyl 121 . . 3  |-  ( K  <  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
57 zltp1le 10924 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  K  e.  ZZ )  ->  ( 0  <  K  <->  ( 0  +  1 )  <_  K ) )
586, 1, 57mp2an 672 . . . . . . . 8  |-  ( 0  <  K  <->  ( 0  +  1 )  <_  K )
5932breq1i 4460 . . . . . . . 8  |-  ( ( 0  +  1 )  <_  K  <->  1  <_  K )
6058, 59bitri 249 . . . . . . 7  |-  ( 0  <  K  <->  1  <_  K )
61 lemulge12 10417 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  K  e.  RR )  /\  ( 0  <_  A  /\  1  <_  K
) )  ->  A  <_  ( K  x.  A
) )
6215, 2, 61mpanl12 682 . . . . . . . 8  |-  ( ( 0  <_  A  /\  1  <_  K )  ->  A  <_  ( K  x.  A ) )
6321, 62mpan 670 . . . . . . 7  |-  ( 1  <_  K  ->  A  <_  ( K  x.  A
) )
6460, 63sylbi 195 . . . . . 6  |-  ( 0  <  K  ->  A  <_  ( K  x.  A
) )
6511simp2i 1006 . . . . . . 7  |-  0  <_  X
66 addge02 10075 . . . . . . . 8  |-  ( ( ( K  x.  A
)  e.  RR  /\  X  e.  RR )  ->  ( 0  <_  X  <->  ( K  x.  A )  <_  ( X  +  ( K  x.  A
) ) ) )
6716, 14, 66mp2an 672 . . . . . . 7  |-  ( 0  <_  X  <->  ( K  x.  A )  <_  ( X  +  ( K  x.  A ) ) )
6865, 67mpbi 208 . . . . . 6  |-  ( K  x.  A )  <_ 
( X  +  ( K  x.  A ) )
6915, 16, 49letri 9725 . . . . . 6  |-  ( ( A  <_  ( K  x.  A )  /\  ( K  x.  A )  <_  ( X  +  ( K  x.  A ) ) )  ->  A  <_  ( X  +  ( K  x.  A ) ) )
7064, 68, 69sylancl 662 . . . . 5  |-  ( 0  <  K  ->  A  <_  ( X  +  ( K  x.  A ) ) )
7115, 49lenlti 9716 . . . . 5  |-  ( A  <_  ( X  +  ( K  x.  A
) )  <->  -.  ( X  +  ( K  x.  A ) )  < 
A )
7270, 71sylib 196 . . . 4  |-  ( 0  <  K  ->  -.  ( X  +  ( K  x.  A )
)  <  A )
73 elfzm11 11761 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( X  +  ( K  x.  A
) )  e.  ( 0 ... ( A  -  1 ) )  <-> 
( ( X  +  ( K  x.  A
) )  e.  ZZ  /\  0  <_  ( X  +  ( K  x.  A ) )  /\  ( X  +  ( K  x.  A )
)  <  A )
) )
746, 8, 73mp2an 672 . . . . 5  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  <->  ( ( X  +  ( K  x.  A ) )  e.  ZZ  /\  0  <_ 
( X  +  ( K  x.  A ) )  /\  ( X  +  ( K  x.  A ) )  < 
A ) )
7574simp3bi 1013 . . . 4  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  ->  ( X  +  ( K  x.  A ) )  < 
A )
7672, 75nsyl 121 . . 3  |-  ( 0  <  K  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
7756, 76jaoi 379 . 2  |-  ( ( K  <  0  \/  0  <  K )  ->  -.  ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) ) )
784, 77sylbi 195 1  |-  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    e. wcel 1767    =/= wne 2662   class class class wbr 4453  (class class class)co 6295   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817   -ucneg 9818   NNcn 10548   ZZcz 10876   ...cfz 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685
This theorem is referenced by:  divalglem7  13933
  Copyright terms: Public domain W3C validator