MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem6 Structured version   Unicode version

Theorem divalglem6 13724
Description: Lemma for divalg 13729. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem6.1  |-  A  e.  NN
divalglem6.2  |-  X  e.  ( 0 ... ( A  -  1 ) )
divalglem6.3  |-  K  e.  ZZ
Assertion
Ref Expression
divalglem6  |-  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )

Proof of Theorem divalglem6
StepHypRef Expression
1 divalglem6.3 . . . 4  |-  K  e.  ZZ
21zrei 10767 . . 3  |-  K  e.  RR
3 0re 9501 . . 3  |-  0  e.  RR
42, 3lttri2i 9603 . 2  |-  ( K  =/=  0  <->  ( K  <  0  \/  0  < 
K ) )
5 divalglem6.2 . . . . . . . . 9  |-  X  e.  ( 0 ... ( A  -  1 ) )
6 0z 10772 . . . . . . . . . 10  |-  0  e.  ZZ
7 divalglem6.1 . . . . . . . . . . 11  |-  A  e.  NN
87nnzi 10785 . . . . . . . . . 10  |-  A  e.  ZZ
9 elfzm11 11649 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( X  e.  ( 0 ... ( A  -  1 ) )  <-> 
( X  e.  ZZ  /\  0  <_  X  /\  X  <  A ) ) )
106, 8, 9mp2an 672 . . . . . . . . 9  |-  ( X  e.  ( 0 ... ( A  -  1 ) )  <->  ( X  e.  ZZ  /\  0  <_  X  /\  X  <  A
) )
115, 10mpbi 208 . . . . . . . 8  |-  ( X  e.  ZZ  /\  0  <_  X  /\  X  < 
A )
1211simp3i 999 . . . . . . 7  |-  X  < 
A
1311simp1i 997 . . . . . . . . 9  |-  X  e.  ZZ
1413zrei 10767 . . . . . . . 8  |-  X  e.  RR
157nnrei 10446 . . . . . . . 8  |-  A  e.  RR
162, 15remulcli 9515 . . . . . . . 8  |-  ( K  x.  A )  e.  RR
1714, 15, 16ltadd1i 10009 . . . . . . 7  |-  ( X  <  A  <->  ( X  +  ( K  x.  A ) )  < 
( A  +  ( K  x.  A ) ) )
1812, 17mpbi 208 . . . . . 6  |-  ( X  +  ( K  x.  A ) )  < 
( A  +  ( K  x.  A ) )
192renegcli 9785 . . . . . . . 8  |-  -u K  e.  RR
207nnnn0i 10702 . . . . . . . . . 10  |-  A  e. 
NN0
2120nn0ge0i 10722 . . . . . . . . 9  |-  0  <_  A
22 lemulge12 10307 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  -u K  e.  RR )  /\  ( 0  <_  A  /\  1  <_  -u K
) )  ->  A  <_  ( -u K  x.  A ) )
2322an4s 822 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( -u K  e.  RR  /\  1  <_  -u K ) )  ->  A  <_  ( -u K  x.  A ) )
2415, 21, 23mpanl12 682 . . . . . . . 8  |-  ( (
-u K  e.  RR  /\  1  <_  -u K )  ->  A  <_  ( -u K  x.  A ) )
2519, 24mpan 670 . . . . . . 7  |-  ( 1  <_  -u K  ->  A  <_  ( -u K  x.  A ) )
26 lt0neg1 9960 . . . . . . . . 9  |-  ( K  e.  RR  ->  ( K  <  0  <->  0  <  -u K ) )
272, 26ax-mp 5 . . . . . . . 8  |-  ( K  <  0  <->  0  <  -u K )
28 znegcl 10795 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  -u K  e.  ZZ )
291, 28ax-mp 5 . . . . . . . . . 10  |-  -u K  e.  ZZ
30 zltp1le 10809 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  -u K  e.  ZZ )  ->  ( 0  <  -u K  <->  ( 0  +  1 )  <_  -u K
) )
316, 29, 30mp2an 672 . . . . . . . . 9  |-  ( 0  <  -u K  <->  ( 0  +  1 )  <_  -u K )
32 0p1e1 10548 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3332breq1i 4410 . . . . . . . . 9  |-  ( ( 0  +  1 )  <_  -u K  <->  1  <_  -u K )
3431, 33bitri 249 . . . . . . . 8  |-  ( 0  <  -u K  <->  1  <_  -u K )
3527, 34bitri 249 . . . . . . 7  |-  ( K  <  0  <->  1  <_  -u K )
362recni 9513 . . . . . . . . . . . 12  |-  K  e.  CC
3715recni 9513 . . . . . . . . . . . 12  |-  A  e.  CC
3836, 37mulneg1i 9905 . . . . . . . . . . 11  |-  ( -u K  x.  A )  =  -u ( K  x.  A )
3938oveq2i 6214 . . . . . . . . . 10  |-  ( A  -  ( -u K  x.  A ) )  =  ( A  -  -u ( K  x.  A )
)
4016recni 9513 . . . . . . . . . . 11  |-  ( K  x.  A )  e.  CC
4137, 40subnegi 9802 . . . . . . . . . 10  |-  ( A  -  -u ( K  x.  A ) )  =  ( A  +  ( K  x.  A ) )
4239, 41eqtri 2483 . . . . . . . . 9  |-  ( A  -  ( -u K  x.  A ) )  =  ( A  +  ( K  x.  A ) )
4342breq1i 4410 . . . . . . . 8  |-  ( ( A  -  ( -u K  x.  A )
)  <_  0  <->  ( A  +  ( K  x.  A ) )  <_ 
0 )
4419, 15remulcli 9515 . . . . . . . . 9  |-  ( -u K  x.  A )  e.  RR
45 suble0 9968 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( -u K  x.  A
)  e.  RR )  ->  ( ( A  -  ( -u K  x.  A ) )  <_ 
0  <->  A  <_  ( -u K  x.  A )
) )
4615, 44, 45mp2an 672 . . . . . . . 8  |-  ( ( A  -  ( -u K  x.  A )
)  <_  0  <->  A  <_  (
-u K  x.  A
) )
4743, 46bitr3i 251 . . . . . . 7  |-  ( ( A  +  ( K  x.  A ) )  <_  0  <->  A  <_  (
-u K  x.  A
) )
4825, 35, 473imtr4i 266 . . . . . 6  |-  ( K  <  0  ->  ( A  +  ( K  x.  A ) )  <_ 
0 )
4914, 16readdcli 9514 . . . . . . 7  |-  ( X  +  ( K  x.  A ) )  e.  RR
5015, 16readdcli 9514 . . . . . . 7  |-  ( A  +  ( K  x.  A ) )  e.  RR
5149, 50, 3ltletri 9617 . . . . . 6  |-  ( ( ( X  +  ( K  x.  A ) )  <  ( A  +  ( K  x.  A ) )  /\  ( A  +  ( K  x.  A )
)  <_  0 )  ->  ( X  +  ( K  x.  A
) )  <  0
)
5218, 48, 51sylancr 663 . . . . 5  |-  ( K  <  0  ->  ( X  +  ( K  x.  A ) )  <  0 )
5349, 3ltnlei 9610 . . . . 5  |-  ( ( X  +  ( K  x.  A ) )  <  0  <->  -.  0  <_  ( X  +  ( K  x.  A ) ) )
5452, 53sylib 196 . . . 4  |-  ( K  <  0  ->  -.  0  <_  ( X  +  ( K  x.  A
) ) )
55 elfzle1 11575 . . . 4  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  ->  0  <_  ( X  +  ( K  x.  A ) ) )
5654, 55nsyl 121 . . 3  |-  ( K  <  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
57 zltp1le 10809 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  K  e.  ZZ )  ->  ( 0  <  K  <->  ( 0  +  1 )  <_  K ) )
586, 1, 57mp2an 672 . . . . . . . 8  |-  ( 0  <  K  <->  ( 0  +  1 )  <_  K )
5932breq1i 4410 . . . . . . . 8  |-  ( ( 0  +  1 )  <_  K  <->  1  <_  K )
6058, 59bitri 249 . . . . . . 7  |-  ( 0  <  K  <->  1  <_  K )
61 lemulge12 10307 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  K  e.  RR )  /\  ( 0  <_  A  /\  1  <_  K
) )  ->  A  <_  ( K  x.  A
) )
6215, 2, 61mpanl12 682 . . . . . . . 8  |-  ( ( 0  <_  A  /\  1  <_  K )  ->  A  <_  ( K  x.  A ) )
6321, 62mpan 670 . . . . . . 7  |-  ( 1  <_  K  ->  A  <_  ( K  x.  A
) )
6460, 63sylbi 195 . . . . . 6  |-  ( 0  <  K  ->  A  <_  ( K  x.  A
) )
6511simp2i 998 . . . . . . 7  |-  0  <_  X
66 addge02 9965 . . . . . . . 8  |-  ( ( ( K  x.  A
)  e.  RR  /\  X  e.  RR )  ->  ( 0  <_  X  <->  ( K  x.  A )  <_  ( X  +  ( K  x.  A
) ) ) )
6716, 14, 66mp2an 672 . . . . . . 7  |-  ( 0  <_  X  <->  ( K  x.  A )  <_  ( X  +  ( K  x.  A ) ) )
6865, 67mpbi 208 . . . . . 6  |-  ( K  x.  A )  <_ 
( X  +  ( K  x.  A ) )
6915, 16, 49letri 9618 . . . . . 6  |-  ( ( A  <_  ( K  x.  A )  /\  ( K  x.  A )  <_  ( X  +  ( K  x.  A ) ) )  ->  A  <_  ( X  +  ( K  x.  A ) ) )
7064, 68, 69sylancl 662 . . . . 5  |-  ( 0  <  K  ->  A  <_  ( X  +  ( K  x.  A ) ) )
7115, 49lenlti 9609 . . . . 5  |-  ( A  <_  ( X  +  ( K  x.  A
) )  <->  -.  ( X  +  ( K  x.  A ) )  < 
A )
7270, 71sylib 196 . . . 4  |-  ( 0  <  K  ->  -.  ( X  +  ( K  x.  A )
)  <  A )
73 elfzm11 11649 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( X  +  ( K  x.  A
) )  e.  ( 0 ... ( A  -  1 ) )  <-> 
( ( X  +  ( K  x.  A
) )  e.  ZZ  /\  0  <_  ( X  +  ( K  x.  A ) )  /\  ( X  +  ( K  x.  A )
)  <  A )
) )
746, 8, 73mp2an 672 . . . . 5  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  <->  ( ( X  +  ( K  x.  A ) )  e.  ZZ  /\  0  <_ 
( X  +  ( K  x.  A ) )  /\  ( X  +  ( K  x.  A ) )  < 
A ) )
7574simp3bi 1005 . . . 4  |-  ( ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) )  ->  ( X  +  ( K  x.  A ) )  < 
A )
7672, 75nsyl 121 . . 3  |-  ( 0  <  K  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
7756, 76jaoi 379 . 2  |-  ( ( K  <  0  \/  0  <  K )  ->  -.  ( X  +  ( K  x.  A ) )  e.  ( 0 ... ( A  -  1 ) ) )
784, 77sylbi 195 1  |-  ( K  =/=  0  ->  -.  ( X  +  ( K  x.  A )
)  e.  ( 0 ... ( A  - 
1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    e. wcel 1758    =/= wne 2648   class class class wbr 4403  (class class class)co 6203   RRcr 9396   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402    < clt 9533    <_ cle 9534    - cmin 9710   -ucneg 9711   NNcn 10437   ZZcz 10761   ...cfz 11558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-nn 10438  df-n0 10695  df-z 10762  df-uz 10977  df-fz 11559
This theorem is referenced by:  divalglem7  13725
  Copyright terms: Public domain W3C validator