MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem10 Structured version   Unicode version

Theorem divalglem10 13918
Description: Lemma for divalg 13919. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
divalglem8.1  |-  N  e.  ZZ
divalglem8.2  |-  D  e.  ZZ
divalglem8.3  |-  D  =/=  0
divalglem8.4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
Assertion
Ref Expression
divalglem10  |-  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )
Distinct variable groups:    D, q,
r    N, q, r
Allowed substitution hints:    S( r, q)

Proof of Theorem divalglem10
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divalglem8.1 . . . 4  |-  N  e.  ZZ
2 divalglem8.2 . . . 4  |-  D  e.  ZZ
3 divalglem8.3 . . . 4  |-  D  =/=  0
4 divalglem8.4 . . . 4  |-  S  =  { r  e.  NN0  |  D  ||  ( N  -  r ) }
5 eqid 2467 . . . 4  |-  sup ( S ,  RR ,  `'  <  )  =  sup ( S ,  RR ,  `'  <  )
61, 2, 3, 4, 5divalglem9 13917 . . 3  |-  E! x  e.  S  x  <  ( abs `  D )
7 elnn0z 10876 . . . . . . . . . 10  |-  ( x  e.  NN0  <->  ( x  e.  ZZ  /\  0  <_  x ) )
87anbi2i 694 . . . . . . . . 9  |-  ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  <->  ( x  <  ( abs `  D
)  /\  ( x  e.  ZZ  /\  0  <_  x ) ) )
9 an12 795 . . . . . . . . . 10  |-  ( ( x  <  ( abs `  D )  /\  (
x  e.  ZZ  /\  0  <_  x ) )  <-> 
( x  e.  ZZ  /\  ( x  <  ( abs `  D )  /\  0  <_  x ) ) )
10 ancom 450 . . . . . . . . . . 11  |-  ( ( x  <  ( abs `  D )  /\  0  <_  x )  <->  ( 0  <_  x  /\  x  <  ( abs `  D
) ) )
1110anbi2i 694 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  ( x  <  ( abs `  D )  /\  0  <_  x ) )  <->  ( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D
) ) ) )
129, 11bitri 249 . . . . . . . . 9  |-  ( ( x  <  ( abs `  D )  /\  (
x  e.  ZZ  /\  0  <_  x ) )  <-> 
( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D ) ) ) )
138, 12bitri 249 . . . . . . . 8  |-  ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  <->  ( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D
) ) ) )
1413anbi1i 695 . . . . . . 7  |-  ( ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) )  <->  ( (
x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D ) ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
15 anass 649 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  ( 0  <_  x  /\  x  <  ( abs `  D ) ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) )  <->  ( x  e.  ZZ  /\  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) ) )
1614, 15bitri 249 . . . . . 6  |-  ( ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) )  <->  ( x  e.  ZZ  /\  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) ) )
17 oveq2 6291 . . . . . . . . . . 11  |-  ( r  =  x  ->  (
( q  x.  D
)  +  r )  =  ( ( q  x.  D )  +  x ) )
1817eqeq2d 2481 . . . . . . . . . 10  |-  ( r  =  x  ->  ( N  =  ( (
q  x.  D )  +  r )  <->  N  =  ( ( q  x.  D )  +  x
) ) )
1918rexbidv 2973 . . . . . . . . 9  |-  ( r  =  x  ->  ( E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r )  <->  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
201, 2, 3, 4divalglem4 13912 . . . . . . . . 9  |-  S  =  { r  e.  NN0  |  E. q  e.  ZZ  N  =  ( (
q  x.  D )  +  r ) }
2119, 20elrab2 3263 . . . . . . . 8  |-  ( x  e.  S  <->  ( x  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
2221anbi2i 694 . . . . . . 7  |-  ( ( x  <  ( abs `  D )  /\  x  e.  S )  <->  ( x  <  ( abs `  D
)  /\  ( x  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) ) )
23 ancom 450 . . . . . . 7  |-  ( ( x  e.  S  /\  x  <  ( abs `  D
) )  <->  ( x  <  ( abs `  D
)  /\  x  e.  S ) )
24 anass 649 . . . . . . 7  |-  ( ( ( x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) )  <->  ( x  <  ( abs `  D
)  /\  ( x  e.  NN0  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) ) )
2522, 23, 243bitr4i 277 . . . . . 6  |-  ( ( x  e.  S  /\  x  <  ( abs `  D
) )  <->  ( (
x  <  ( abs `  D )  /\  x  e.  NN0 )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) )
26 df-3an 975 . . . . . . . . 9  |-  ( ( 0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  ( (
0  <_  x  /\  x  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  x ) ) )
2726rexbii 2965 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  E. q  e.  ZZ  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  N  =  ( ( q  x.  D )  +  x ) ) )
28 r19.42v 3016 . . . . . . . 8  |-  ( E. q  e.  ZZ  (
( 0  <_  x  /\  x  <  ( abs `  D ) )  /\  N  =  ( (
q  x.  D )  +  x ) )  <-> 
( ( 0  <_  x  /\  x  <  ( abs `  D ) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D
)  +  x ) ) )
2927, 28bitri 249 . . . . . . 7  |-  ( E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  ( (
0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) )
3029anbi2i 694 . . . . . 6  |-  ( ( x  e.  ZZ  /\  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) ) )  <->  ( x  e.  ZZ  /\  ( ( 0  <_  x  /\  x  <  ( abs `  D
) )  /\  E. q  e.  ZZ  N  =  ( ( q  x.  D )  +  x ) ) ) )
3116, 25, 303bitr4i 277 . . . . 5  |-  ( ( x  e.  S  /\  x  <  ( abs `  D
) )  <->  ( x  e.  ZZ  /\  E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( (
q  x.  D )  +  x ) ) ) )
3231eubii 2300 . . . 4  |-  ( E! x ( x  e.  S  /\  x  < 
( abs `  D
) )  <->  E! x
( x  e.  ZZ  /\ 
E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) ) ) )
33 df-reu 2821 . . . 4  |-  ( E! x  e.  S  x  <  ( abs `  D
)  <->  E! x ( x  e.  S  /\  x  <  ( abs `  D
) ) )
34 df-reu 2821 . . . 4  |-  ( E! x  e.  ZZ  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  E! x
( x  e.  ZZ  /\ 
E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) ) ) )
3532, 33, 343bitr4i 277 . . 3  |-  ( E! x  e.  S  x  <  ( abs `  D
)  <->  E! x  e.  ZZ  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) ) )
366, 35mpbi 208 . 2  |-  E! x  e.  ZZ  E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( (
q  x.  D )  +  x ) )
37 breq2 4451 . . . . 5  |-  ( x  =  r  ->  (
0  <_  x  <->  0  <_  r ) )
38 breq1 4450 . . . . 5  |-  ( x  =  r  ->  (
x  <  ( abs `  D )  <->  r  <  ( abs `  D ) ) )
39 oveq2 6291 . . . . . 6  |-  ( x  =  r  ->  (
( q  x.  D
)  +  x )  =  ( ( q  x.  D )  +  r ) )
4039eqeq2d 2481 . . . . 5  |-  ( x  =  r  ->  ( N  =  ( (
q  x.  D )  +  x )  <->  N  =  ( ( q  x.  D )  +  r ) ) )
4137, 38, 403anbi123d 1299 . . . 4  |-  ( x  =  r  ->  (
( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) )  <->  ( 0  <_  r  /\  r  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  r ) ) ) )
4241rexbidv 2973 . . 3  |-  ( x  =  r  ->  ( E. q  e.  ZZ  ( 0  <_  x  /\  x  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  x ) )  <->  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) ) )
4342cbvreuv 3090 . 2  |-  ( E! x  e.  ZZ  E. q  e.  ZZ  (
0  <_  x  /\  x  <  ( abs `  D
)  /\  N  =  ( ( q  x.  D )  +  x
) )  <->  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) ) )
4436, 43mpbi 208 1  |-  E! r  e.  ZZ  E. q  e.  ZZ  ( 0  <_ 
r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D
)  +  r ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E!weu 2275    =/= wne 2662   E.wrex 2815   E!wreu 2816   {crab 2818   class class class wbr 4447   `'ccnv 4998   ` cfv 5587  (class class class)co 6283   supcsup 7899   RRcr 9490   0cc0 9491    + caddc 9494    x. cmul 9496    < clt 9627    <_ cle 9628    - cmin 9804   NN0cn0 10794   ZZcz 10863   abscabs 13029    || cdivides 13846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-rp 11220  df-fz 11672  df-seq 12075  df-exp 12134  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-dvds 13847
This theorem is referenced by:  divalg  13919
  Copyright terms: Public domain W3C validator