MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplitlem Structured version   Unicode version

Theorem ditgsplitlem 21999
Description: Lemma for ditgsplit 22000. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x  |-  ( ph  ->  X  e.  RR )
ditgsplit.y  |-  ( ph  ->  Y  e.  RR )
ditgsplit.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ditgsplit.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ditgsplit.c  |-  ( ph  ->  C  e.  ( X [,] Y ) )
ditgsplit.d  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
ditgsplit.i  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
ditgsplit.1  |-  ( ( ps  /\  th )  <->  ( A  <_  B  /\  B  <_  C ) )
Assertion
Ref Expression
ditgsplitlem  |-  ( ( ( ph  /\  ps )  /\  th )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    ps, x    th, x    x, V    x, X    x, Y
Allowed substitution hint:    D( x)

Proof of Theorem ditgsplitlem
StepHypRef Expression
1 ditgsplit.a . . . . . . 7  |-  ( ph  ->  A  e.  ( X [,] Y ) )
2 ditgsplit.x . . . . . . . 8  |-  ( ph  ->  X  e.  RR )
3 ditgsplit.y . . . . . . . 8  |-  ( ph  ->  Y  e.  RR )
4 elicc2 11585 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
52, 3, 4syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
61, 5mpbid 210 . . . . . 6  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
76simp1d 1008 . . . . 5  |-  ( ph  ->  A  e.  RR )
87adantr 465 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  A  e.  RR )
9 ditgsplit.c . . . . . . 7  |-  ( ph  ->  C  e.  ( X [,] Y ) )
10 elicc2 11585 . . . . . . . 8  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
112, 3, 10syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
129, 11mpbid 210 . . . . . 6  |-  ( ph  ->  ( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) )
1312simp1d 1008 . . . . 5  |-  ( ph  ->  C  e.  RR )
1413adantr 465 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  C  e.  RR )
15 ditgsplit.b . . . . . . . 8  |-  ( ph  ->  B  e.  ( X [,] Y ) )
16 elicc2 11585 . . . . . . . . 9  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
172, 3, 16syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
1815, 17mpbid 210 . . . . . . 7  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
1918simp1d 1008 . . . . . 6  |-  ( ph  ->  B  e.  RR )
2019adantr 465 . . . . 5  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  B  e.  RR )
21 simpr 461 . . . . . . 7  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( ps  /\  th ) )
22 ditgsplit.1 . . . . . . 7  |-  ( ( ps  /\  th )  <->  ( A  <_  B  /\  B  <_  C ) )
2321, 22sylib 196 . . . . . 6  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( A  <_  B  /\  B  <_  C ) )
2423simpld 459 . . . . 5  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  A  <_  B )
2523simprd 463 . . . . 5  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  B  <_  C )
26 elicc2 11585 . . . . . . 7  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
277, 13, 26syl2anc 661 . . . . . 6  |-  ( ph  ->  ( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
2827adantr 465 . . . . 5  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( B  e.  ( A [,] C )  <-> 
( B  e.  RR  /\  A  <_  B  /\  B  <_  C ) ) )
2920, 24, 25, 28mpbir3and 1179 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  B  e.  ( A [,] C ) )
302rexrd 9639 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
316simp2d 1009 . . . . . . . . 9  |-  ( ph  ->  X  <_  A )
32 iooss1 11560 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  X  <_  A )  ->  ( A (,) C )  C_  ( X (,) C ) )
3330, 31, 32syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( A (,) C
)  C_  ( X (,) C ) )
343rexrd 9639 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
3512simp3d 1010 . . . . . . . . 9  |-  ( ph  ->  C  <_  Y )
36 iooss2 11561 . . . . . . . . 9  |-  ( ( Y  e.  RR*  /\  C  <_  Y )  ->  ( X (,) C )  C_  ( X (,) Y ) )
3734, 35, 36syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( X (,) C
)  C_  ( X (,) Y ) )
3833, 37sstrd 3514 . . . . . . 7  |-  ( ph  ->  ( A (,) C
)  C_  ( X (,) Y ) )
3938sselda 3504 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  x  e.  ( X (,) Y ) )
40 ditgsplit.i . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
41 iblmbf 21909 . . . . . . . 8  |-  ( ( x  e.  ( X (,) Y )  |->  D )  e.  L^1 
->  ( x  e.  ( X (,) Y ) 
|->  D )  e. MblFn )
4240, 41syl 16 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e. MblFn )
43 ditgsplit.d . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
4442, 43mbfmptcl 21779 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  CC )
4539, 44syldan 470 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
4645adantlr 714 . . . 4  |-  ( ( ( ph  /\  ( ps  /\  th ) )  /\  x  e.  ( A (,) C ) )  ->  D  e.  CC )
47 iooss1 11560 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  X  <_  A )  ->  ( A (,) B )  C_  ( X (,) B ) )
4830, 31, 47syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) B ) )
4918simp3d 1010 . . . . . . . 8  |-  ( ph  ->  B  <_  Y )
50 iooss2 11561 . . . . . . . 8  |-  ( ( Y  e.  RR*  /\  B  <_  Y )  ->  ( X (,) B )  C_  ( X (,) Y ) )
5134, 49, 50syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( X (,) B
)  C_  ( X (,) Y ) )
5248, 51sstrd 3514 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) Y ) )
53 ioombl 21710 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
5453a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
5552, 54, 43, 40iblss 21946 . . . . 5  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  D )  e.  L^1 )
5655adantr 465 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( x  e.  ( A (,) B ) 
|->  D )  e.  L^1 )
5718simp2d 1009 . . . . . . . 8  |-  ( ph  ->  X  <_  B )
58 iooss1 11560 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  X  <_  B )  ->  ( B (,) C )  C_  ( X (,) C ) )
5930, 57, 58syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( B (,) C
)  C_  ( X (,) C ) )
6059, 37sstrd 3514 . . . . . 6  |-  ( ph  ->  ( B (,) C
)  C_  ( X (,) Y ) )
61 ioombl 21710 . . . . . . 7  |-  ( B (,) C )  e. 
dom  vol
6261a1i 11 . . . . . 6  |-  ( ph  ->  ( B (,) C
)  e.  dom  vol )
6360, 62, 43, 40iblss 21946 . . . . 5  |-  ( ph  ->  ( x  e.  ( B (,) C ) 
|->  D )  e.  L^1 )
6463adantr 465 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( x  e.  ( B (,) C ) 
|->  D )  e.  L^1 )
658, 14, 29, 46, 56, 64itgsplitioo 21979 . . 3  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  S. ( A (,) C
) D  _d x  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C
) D  _d x ) )
668, 20, 14, 24, 25letrd 9734 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  A  <_  C )
6766ditgpos 21995 . . 3  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  S__ [ A  ->  C ] D  _d x  =  S. ( A (,) C ) D  _d x )
6824ditgpos 21995 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  S__ [ A  ->  B ] D  _d x  =  S. ( A (,) B ) D  _d x )
6925ditgpos 21995 . . . 4  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  S__ [ B  ->  C ] D  _d x  =  S. ( B (,) C ) D  _d x )
7068, 69oveq12d 6300 . . 3  |-  ( (
ph  /\  ( ps  /\ 
th ) )  -> 
( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S. ( A (,) B ) D  _d x  +  S. ( B (,) C ) D  _d x ) )
7165, 67, 703eqtr4d 2518 . 2  |-  ( (
ph  /\  ( ps  /\ 
th ) )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
7271anassrs 648 1  |-  ( ( ( ph  /\  ps )  /\  th )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999  (class class class)co 6282   CCcc 9486   RRcr 9487    + caddc 9491   RR*cxr 9623    <_ cle 9625   (,)cioo 11525   [,]cicc 11528   volcvol 21610  MblFncmbf 21758   L^1cibl 21761   S.citg 21762   S__cdit 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-sum 13468  df-rest 14674  df-topgen 14695  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-top 19166  df-bases 19168  df-topon 19169  df-cmp 19653  df-ovol 21611  df-vol 21612  df-mbf 21763  df-itg1 21764  df-itg2 21765  df-ibl 21766  df-itg 21767  df-0p 21812  df-ditg 21986
This theorem is referenced by:  ditgsplit  22000
  Copyright terms: Public domain W3C validator