MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Unicode version

Theorem ditgsplit 22000
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 21978, there is no constraint on the ordering of the points  A ,  B ,  C in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x  |-  ( ph  ->  X  e.  RR )
ditgsplit.y  |-  ( ph  ->  Y  e.  RR )
ditgsplit.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ditgsplit.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ditgsplit.c  |-  ( ph  ->  C  e.  ( X [,] Y ) )
ditgsplit.d  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
ditgsplit.i  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
Assertion
Ref Expression
ditgsplit  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, V    x, X    x, Y
Allowed substitution hint:    D( x)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4  |-  ( ph  ->  A  e.  ( X [,] Y ) )
2 ditgsplit.x . . . . 5  |-  ( ph  ->  X  e.  RR )
3 ditgsplit.y . . . . 5  |-  ( ph  ->  Y  e.  RR )
4 elicc2 11585 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
52, 3, 4syl2anc 661 . . . 4  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
61, 5mpbid 210 . . 3  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
76simp1d 1008 . 2  |-  ( ph  ->  A  e.  RR )
8 ditgsplit.b . . . 4  |-  ( ph  ->  B  e.  ( X [,] Y ) )
9 elicc2 11585 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
102, 3, 9syl2anc 661 . . . 4  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
118, 10mpbid 210 . . 3  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
1211simp1d 1008 . 2  |-  ( ph  ->  B  e.  RR )
137adantr 465 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  A  e.  RR )
14 ditgsplit.c . . . . . 6  |-  ( ph  ->  C  e.  ( X [,] Y ) )
15 elicc2 11585 . . . . . . 7  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
162, 3, 15syl2anc 661 . . . . . 6  |-  ( ph  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
1714, 16mpbid 210 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) )
1817simp1d 1008 . . . 4  |-  ( ph  ->  C  e.  RR )
1918adantr 465 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  C  e.  RR )
2012ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  B  e.  RR )
2118ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  C  e.  RR )
22 ditgsplit.d . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
23 ditgsplit.i . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
24 biid 236 . . . . . 6  |-  ( ( A  <_  B  /\  B  <_  C )  <->  ( A  <_  B  /\  B  <_  C ) )
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 21999 . . . . 5  |-  ( ( ( ph  /\  A  <_  B )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
2625adantlr 714 . . . 4  |-  ( ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
27 biid 236 . . . . . . . 8  |-  ( ( A  <_  C  /\  C  <_  B )  <->  ( A  <_  C  /\  C  <_  B ) )
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 21999 . . . . . . 7  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  B ] D  _d x  =  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x ) )
2928oveq1d 6297 . . . . . 6  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x ) )
302, 3, 1, 14, 22, 23ditgcl 21997 . . . . . . . . 9  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  e.  CC )
312, 3, 14, 8, 22, 23ditgcl 21997 . . . . . . . . 9  |-  ( ph  ->  S__ [ C  ->  B ] D  _d x  e.  CC )
322, 3, 8, 14, 22, 23ditgcl 21997 . . . . . . . . 9  |-  ( ph  ->  S__ [ B  ->  C ] D  _d x  e.  CC )
3330, 31, 32addassd 9614 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) ) )
342, 3, 14, 8, 22, 23ditgswap 21998 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ B  ->  C ] D  _d x  =  -u S__ [ C  ->  B ] D  _d x )
3534oveq2d 6298 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__ [ C  ->  B ] D  _d x  +  -u S__ [ C  ->  B ] D  _d x ) )
3631negidd 9916 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  -u S__ [ C  ->  B ] D  _d x )  =  0 )
3735, 36eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  0 )
3837oveq2d 6298 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__
[ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )  =  ( S__ [ A  ->  C ] D  _d x  +  0 ) )
3930addid1d 9775 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  0 )  =  S__ [ A  ->  C ] D  _d x )
4033, 38, 393eqtrd 2512 . . . . . . 7  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
4140ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
4229, 41eqtr2d 2509 . . . . 5  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4342adantllr 718 . . . 4  |-  ( ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4420, 21, 26, 43lecasei 9686 . . 3  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4540ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
46 ancom 450 . . . . . . . 8  |-  ( ( A  <_  B  /\  C  <_  A )  <->  ( C  <_  A  /\  A  <_  B ) )
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 21999 . . . . . . 7  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  S__ [ C  ->  B ] D  _d x  =  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )
4847oveq2d 6298 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
492, 3, 1, 14, 22, 23ditgswap 21998 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ C  ->  A ] D  _d x  =  -u S__ [ A  ->  C ] D  _d x )
5049oveq2d 6298 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  =  ( S__ [ A  ->  C ] D  _d x  +  -u S__ [ A  ->  C ] D  _d x ) )
5130negidd 9916 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  -u S__ [ A  ->  C ] D  _d x )  =  0 )
5250, 51eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  =  0 )
5352oveq1d 6297 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( 0  +  S__ [ A  ->  B ] D  _d x ) )
542, 3, 14, 1, 22, 23ditgcl 21997 . . . . . . . . 9  |-  ( ph  ->  S__ [ C  ->  A ] D  _d x  e.  CC )
552, 3, 1, 8, 22, 23ditgcl 21997 . . . . . . . . 9  |-  ( ph  ->  S__ [ A  ->  B ] D  _d x  e.  CC )
5630, 54, 55addassd 9614 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
5755addid2d 9776 . . . . . . . 8  |-  ( ph  ->  ( 0  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ A  ->  B ] D  _d x )
5853, 56, 573eqtr3d 2516 . . . . . . 7  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__
[ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__
[ A  ->  B ] D  _d x
)
5958ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__ [ A  ->  B ] D  _d x )
6048, 59eqtrd 2508 . . . . 5  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  S__ [ A  ->  B ] D  _d x )
6160oveq1d 6297 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
6245, 61eqtr3d 2510 . . 3  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
6313, 19, 44, 62lecasei 9686 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__
[ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
647adantr 465 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  A  e.  RR )
6518adantr 465 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  C  e.  RR )
66 biid 236 . . . . . 6  |-  ( ( B  <_  A  /\  A  <_  C )  <->  ( B  <_  A  /\  A  <_  C ) )
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 21999 . . . . 5  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  S__ [ B  ->  C ] D  _d x  =  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )
6867oveq2d 6298 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
692, 3, 1, 8, 22, 23ditgswap 21998 . . . . . . . . 9  |-  ( ph  ->  S__ [ B  ->  A ] D  _d x  =  -u S__ [ A  ->  B ] D  _d x )
7069oveq2d 6298 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  =  ( S__ [ A  ->  B ] D  _d x  +  -u S__ [ A  ->  B ] D  _d x ) )
7155negidd 9916 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  -u S__ [ A  ->  B ] D  _d x )  =  0 )
7270, 71eqtrd 2508 . . . . . . 7  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  =  0 )
7372oveq1d 6297 . . . . . 6  |-  ( ph  ->  ( ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( 0  +  S__ [ A  ->  C ] D  _d x ) )
742, 3, 8, 1, 22, 23ditgcl 21997 . . . . . . 7  |-  ( ph  ->  S__ [ B  ->  A ] D  _d x  e.  CC )
7555, 74, 30addassd 9614 . . . . . 6  |-  ( ph  ->  ( ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
7630addid2d 9776 . . . . . 6  |-  ( ph  ->  ( 0  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
7773, 75, 763eqtr3d 2516 . . . . 5  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__
[ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__
[ A  ->  C ] D  _d x
)
7877ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__ [ A  ->  C ] D  _d x )
7968, 78eqtr2d 2509 . . 3  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
8012ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  B  e.  RR )
8118ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  C  e.  RR )
82 ancom 450 . . . . . . . . . 10  |-  ( ( C  <_  A  /\  B  <_  C )  <->  ( B  <_  C  /\  C  <_  A ) )
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 21999 . . . . . . . . 9  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ B  ->  A ] D  _d x  =  ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x ) )
8483oveq1d 6297 . . . . . . . 8  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x ) )
8532, 54, 30addassd 9614 . . . . . . . . . 10  |-  ( ph  ->  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( S__
[ B  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
862, 3, 14, 1, 22, 23ditgswap 21998 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  -u S__ [ C  ->  A ] D  _d x )
8786oveq2d 6298 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  ( S__ [ C  ->  A ] D  _d x  +  -u S__ [ C  ->  A ] D  _d x ) )
8854negidd 9916 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  -u S__ [ C  ->  A ] D  _d x )  =  0 )
8987, 88eqtrd 2508 . . . . . . . . . . 11  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  0 )
9089oveq2d 6298 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ B  ->  C ] D  _d x  +  ( S__
[ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  ( S__ [ B  ->  C ] D  _d x  +  0 ) )
9132addid1d 9775 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ B  ->  C ] D  _d x  +  0 )  =  S__ [ B  ->  C ] D  _d x )
9285, 90, 913eqtrd 2512 . . . . . . . . 9  |-  ( ph  ->  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ B  ->  C ] D  _d x )
9392ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  (
( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ B  ->  C ] D  _d x )
9484, 93eqtr2d 2509 . . . . . . 7  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ B  ->  C ] D  _d x  =  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )
9594oveq2d 6298 . . . . . 6  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
9677ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__ [ A  ->  C ] D  _d x )
9795, 96eqtr2d 2509 . . . . 5  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
9897adantllr 718 . . . 4  |-  ( ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
99 ancom 450 . . . . . . . . . . . 12  |-  ( ( B  <_  A  /\  C  <_  B )  <->  ( C  <_  B  /\  B  <_  A ) )
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 21999 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ C  ->  A ] D  _d x  =  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x ) )
101100oveq1d 6297 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x ) )
10231, 74, 55addassd 9614 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( S__
[ C  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
1032, 3, 8, 1, 22, 23ditgswap 21998 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S__ [ A  ->  B ] D  _d x  =  -u S__ [ B  ->  A ] D  _d x )
104103oveq2d 6298 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  ( S__ [ B  ->  A ] D  _d x  +  -u S__ [ B  ->  A ] D  _d x ) )
10574negidd 9916 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  -u S__ [ B  ->  A ] D  _d x )  =  0 )
106104, 105eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  0 )
107106oveq2d 6298 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  ( S__
[ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  ( S__ [ C  ->  B ] D  _d x  +  0 ) )
10831addid1d 9775 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  0 )  =  S__ [ C  ->  B ] D  _d x )
109102, 107, 1083eqtrd 2512 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ C  ->  B ] D  _d x )
110109ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  (
( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ C  ->  B ] D  _d x )
111101, 110eqtr2d 2509 . . . . . . . . 9  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ C  ->  B ] D  _d x  =  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )
112111oveq2d 6298 . . . . . . . 8  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
11358ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__ [ A  ->  B ] D  _d x )
114112, 113eqtr2d 2509 . . . . . . 7  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  B ] D  _d x  =  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x ) )
115114oveq1d 6297 . . . . . 6  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x ) )
11640ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
117115, 116eqtr2d 2509 . . . . 5  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
118117adantlr 714 . . . 4  |-  ( ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
11980, 81, 98, 118lecasei 9686 . . 3  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
12064, 65, 79, 119lecasei 9686 . 2  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__
[ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
1217, 12, 63, 120lecasei 9686 1  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4447    |-> cmpt 4505  (class class class)co 6282   RRcr 9487   0cc0 9488    + caddc 9491    <_ cle 9625   -ucneg 9802   (,)cioo 11525   [,]cicc 11528   L^1cibl 21761   S__cdit 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-sum 13468  df-rest 14674  df-topgen 14695  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-top 19166  df-bases 19168  df-topon 19169  df-cmp 19653  df-ovol 21611  df-vol 21612  df-mbf 21763  df-itg1 21764  df-itg2 21765  df-ibl 21766  df-itg 21767  df-0p 21812  df-ditg 21986
This theorem is referenced by:  itgsubstlem  22184
  Copyright terms: Public domain W3C validator