MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgsplit Structured version   Unicode version

Theorem ditgsplit 21339
Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc 21317, there is no constraint on the ordering of the points  A ,  B ,  C in the domain. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgsplit.x  |-  ( ph  ->  X  e.  RR )
ditgsplit.y  |-  ( ph  ->  Y  e.  RR )
ditgsplit.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ditgsplit.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ditgsplit.c  |-  ( ph  ->  C  e.  ( X [,] Y ) )
ditgsplit.d  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
ditgsplit.i  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
Assertion
Ref Expression
ditgsplit  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Distinct variable groups:    x, A    x, B    x, C    ph, x    x, V    x, X    x, Y
Allowed substitution hint:    D( x)

Proof of Theorem ditgsplit
StepHypRef Expression
1 ditgsplit.a . . . 4  |-  ( ph  ->  A  e.  ( X [,] Y ) )
2 ditgsplit.x . . . . 5  |-  ( ph  ->  X  e.  RR )
3 ditgsplit.y . . . . 5  |-  ( ph  ->  Y  e.  RR )
4 elicc2 11363 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
52, 3, 4syl2anc 661 . . . 4  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
61, 5mpbid 210 . . 3  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
76simp1d 1000 . 2  |-  ( ph  ->  A  e.  RR )
8 ditgsplit.b . . . 4  |-  ( ph  ->  B  e.  ( X [,] Y ) )
9 elicc2 11363 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
102, 3, 9syl2anc 661 . . . 4  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
118, 10mpbid 210 . . 3  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
1211simp1d 1000 . 2  |-  ( ph  ->  B  e.  RR )
137adantr 465 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  A  e.  RR )
14 ditgsplit.c . . . . . 6  |-  ( ph  ->  C  e.  ( X [,] Y ) )
15 elicc2 11363 . . . . . . 7  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
162, 3, 15syl2anc 661 . . . . . 6  |-  ( ph  ->  ( C  e.  ( X [,] Y )  <-> 
( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) ) )
1714, 16mpbid 210 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  X  <_  C  /\  C  <_  Y ) )
1817simp1d 1000 . . . 4  |-  ( ph  ->  C  e.  RR )
1918adantr 465 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  C  e.  RR )
2012ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  B  e.  RR )
2118ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  C  e.  RR )
22 ditgsplit.d . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  D  e.  V )
23 ditgsplit.i . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  D )  e.  L^1 )
24 biid 236 . . . . . 6  |-  ( ( A  <_  B  /\  B  <_  C )  <->  ( A  <_  B  /\  B  <_  C ) )
252, 3, 1, 8, 14, 22, 23, 24ditgsplitlem 21338 . . . . 5  |-  ( ( ( ph  /\  A  <_  B )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
2625adantlr 714 . . . 4  |-  ( ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
27 biid 236 . . . . . . . 8  |-  ( ( A  <_  C  /\  C  <_  B )  <->  ( A  <_  C  /\  C  <_  B ) )
282, 3, 1, 14, 8, 22, 23, 27ditgsplitlem 21338 . . . . . . 7  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  B ] D  _d x  =  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x ) )
2928oveq1d 6109 . . . . . 6  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x ) )
302, 3, 1, 14, 22, 23ditgcl 21336 . . . . . . . . 9  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  e.  CC )
312, 3, 14, 8, 22, 23ditgcl 21336 . . . . . . . . 9  |-  ( ph  ->  S__ [ C  ->  B ] D  _d x  e.  CC )
322, 3, 8, 14, 22, 23ditgcl 21336 . . . . . . . . 9  |-  ( ph  ->  S__ [ B  ->  C ] D  _d x  e.  CC )
3330, 31, 32addassd 9411 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) ) )
342, 3, 14, 8, 22, 23ditgswap 21337 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ B  ->  C ] D  _d x  =  -u S__ [ C  ->  B ] D  _d x )
3534oveq2d 6110 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__ [ C  ->  B ] D  _d x  +  -u S__ [ C  ->  B ] D  _d x ) )
3631negidd 9712 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  -u S__ [ C  ->  B ] D  _d x )  =  0 )
3735, 36eqtrd 2475 . . . . . . . . 9  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  0 )
3837oveq2d 6110 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__
[ C  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )  =  ( S__ [ A  ->  C ] D  _d x  +  0 ) )
3930addid1d 9572 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  0 )  =  S__ [ A  ->  C ] D  _d x )
4033, 38, 393eqtrd 2479 . . . . . . 7  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
4140ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
4229, 41eqtr2d 2476 . . . . 5  |-  ( ( ( ph  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4342adantllr 718 . . . 4  |-  ( ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4420, 21, 26, 43lecasei 9483 . . 3  |-  ( ( ( ph  /\  A  <_  B )  /\  A  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
4540ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
46 ancom 450 . . . . . . . 8  |-  ( ( A  <_  B  /\  C  <_  A )  <->  ( C  <_  A  /\  A  <_  B ) )
472, 3, 14, 1, 8, 22, 23, 46ditgsplitlem 21338 . . . . . . 7  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  S__ [ C  ->  B ] D  _d x  =  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )
4847oveq2d 6110 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
492, 3, 1, 14, 22, 23ditgswap 21337 . . . . . . . . . . 11  |-  ( ph  ->  S__ [ C  ->  A ] D  _d x  =  -u S__ [ A  ->  C ] D  _d x )
5049oveq2d 6110 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  =  ( S__ [ A  ->  C ] D  _d x  +  -u S__ [ A  ->  C ] D  _d x ) )
5130negidd 9712 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  -u S__ [ A  ->  C ] D  _d x )  =  0 )
5250, 51eqtrd 2475 . . . . . . . . 9  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  =  0 )
5352oveq1d 6109 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( 0  +  S__ [ A  ->  B ] D  _d x ) )
542, 3, 14, 1, 22, 23ditgcl 21336 . . . . . . . . 9  |-  ( ph  ->  S__ [ C  ->  A ] D  _d x  e.  CC )
552, 3, 1, 8, 22, 23ditgcl 21336 . . . . . . . . 9  |-  ( ph  ->  S__ [ A  ->  B ] D  _d x  e.  CC )
5630, 54, 55addassd 9411 . . . . . . . 8  |-  ( ph  ->  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
5755addid2d 9573 . . . . . . . 8  |-  ( ph  ->  ( 0  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ A  ->  B ] D  _d x )
5853, 56, 573eqtr3d 2483 . . . . . . 7  |-  ( ph  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__
[ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__
[ A  ->  B ] D  _d x
)
5958ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__ [ A  ->  B ] D  _d x )
6048, 59eqtrd 2475 . . . . 5  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  S__ [ A  ->  B ] D  _d x )
6160oveq1d 6109 . . . 4  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
6245, 61eqtr3d 2477 . . 3  |-  ( ( ( ph  /\  A  <_  B )  /\  C  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
6313, 19, 44, 62lecasei 9483 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__
[ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
647adantr 465 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  A  e.  RR )
6518adantr 465 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  C  e.  RR )
66 biid 236 . . . . . 6  |-  ( ( B  <_  A  /\  A  <_  C )  <->  ( B  <_  A  /\  A  <_  C ) )
672, 3, 8, 1, 14, 22, 23, 66ditgsplitlem 21338 . . . . 5  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  S__ [ B  ->  C ] D  _d x  =  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )
6867oveq2d 6110 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
692, 3, 1, 8, 22, 23ditgswap 21337 . . . . . . . . 9  |-  ( ph  ->  S__ [ B  ->  A ] D  _d x  =  -u S__ [ A  ->  B ] D  _d x )
7069oveq2d 6110 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  =  ( S__ [ A  ->  B ] D  _d x  +  -u S__ [ A  ->  B ] D  _d x ) )
7155negidd 9712 . . . . . . . 8  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  -u S__ [ A  ->  B ] D  _d x )  =  0 )
7270, 71eqtrd 2475 . . . . . . 7  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  =  0 )
7372oveq1d 6109 . . . . . 6  |-  ( ph  ->  ( ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( 0  +  S__ [ A  ->  C ] D  _d x ) )
742, 3, 8, 1, 22, 23ditgcl 21336 . . . . . . 7  |-  ( ph  ->  S__ [ B  ->  A ] D  _d x  e.  CC )
7555, 74, 30addassd 9411 . . . . . 6  |-  ( ph  ->  ( ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
7630addid2d 9573 . . . . . 6  |-  ( ph  ->  ( 0  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
7773, 75, 763eqtr3d 2483 . . . . 5  |-  ( ph  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__
[ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__
[ A  ->  C ] D  _d x
)
7877ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__ [ A  ->  C ] D  _d x )
7968, 78eqtr2d 2476 . . 3  |-  ( ( ( ph  /\  B  <_  A )  /\  A  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
8012ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  B  e.  RR )
8118ad2antrr 725 . . . 4  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  C  e.  RR )
82 ancom 450 . . . . . . . . . 10  |-  ( ( C  <_  A  /\  B  <_  C )  <->  ( B  <_  C  /\  C  <_  A ) )
832, 3, 8, 14, 1, 22, 23, 82ditgsplitlem 21338 . . . . . . . . 9  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ B  ->  A ] D  _d x  =  ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x ) )
8483oveq1d 6109 . . . . . . . 8  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x ) )
8532, 54, 30addassd 9411 . . . . . . . . . 10  |-  ( ph  ->  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  ( S__
[ B  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
862, 3, 14, 1, 22, 23ditgswap 21337 . . . . . . . . . . . . 13  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  -u S__ [ C  ->  A ] D  _d x )
8786oveq2d 6110 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  ( S__ [ C  ->  A ] D  _d x  +  -u S__ [ C  ->  A ] D  _d x ) )
8854negidd 9712 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  -u S__ [ C  ->  A ] D  _d x )  =  0 )
8987, 88eqtrd 2475 . . . . . . . . . . 11  |-  ( ph  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x )  =  0 )
9089oveq2d 6110 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ B  ->  C ] D  _d x  +  ( S__
[ C  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  ( S__ [ B  ->  C ] D  _d x  +  0 ) )
9132addid1d 9572 . . . . . . . . . 10  |-  ( ph  ->  ( S__ [ B  ->  C ] D  _d x  +  0 )  =  S__ [ B  ->  C ] D  _d x )
9285, 90, 913eqtrd 2479 . . . . . . . . 9  |-  ( ph  ->  ( ( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ B  ->  C ] D  _d x )
9392ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  (
( S__ [ B  ->  C ] D  _d x  +  S__ [ C  ->  A ] D  _d x )  +  S__ [ A  ->  C ] D  _d x )  =  S__ [ B  ->  C ] D  _d x )
9484, 93eqtr2d 2476 . . . . . . 7  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ B  ->  C ] D  _d x  =  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )
9594oveq2d 6110 . . . . . 6  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( S__
[ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) ) )
9677ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  ( S__ [ A  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  C ] D  _d x ) )  =  S__ [ A  ->  C ] D  _d x )
9795, 96eqtr2d 2476 . . . . 5  |-  ( ( ( ph  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
9897adantllr 718 . . . 4  |-  ( ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  /\  B  <_  C )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
99 ancom 450 . . . . . . . . . . . 12  |-  ( ( B  <_  A  /\  C  <_  B )  <->  ( C  <_  B  /\  B  <_  A ) )
1002, 3, 14, 8, 1, 22, 23, 99ditgsplitlem 21338 . . . . . . . . . . 11  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ C  ->  A ] D  _d x  =  ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x ) )
101100oveq1d 6109 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x ) )
10231, 74, 55addassd 9411 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  ( S__
[ C  ->  B ] D  _d x  +  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
1032, 3, 8, 1, 22, 23ditgswap 21337 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S__ [ A  ->  B ] D  _d x  =  -u S__ [ B  ->  A ] D  _d x )
104103oveq2d 6110 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  ( S__ [ B  ->  A ] D  _d x  +  -u S__ [ B  ->  A ] D  _d x ) )
10574negidd 9712 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  -u S__ [ B  ->  A ] D  _d x )  =  0 )
106104, 105eqtrd 2475 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S__ [ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x )  =  0 )
107106oveq2d 6110 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  ( S__
[ B  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  ( S__ [ C  ->  B ] D  _d x  +  0 ) )
10831addid1d 9572 . . . . . . . . . . . 12  |-  ( ph  ->  ( S__ [ C  ->  B ] D  _d x  +  0 )  =  S__ [ C  ->  B ] D  _d x )
109102, 107, 1083eqtrd 2479 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ C  ->  B ] D  _d x )
110109ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  (
( S__ [ C  ->  B ] D  _d x  +  S__ [ B  ->  A ] D  _d x )  +  S__ [ A  ->  B ] D  _d x )  =  S__ [ C  ->  B ] D  _d x )
111101, 110eqtr2d 2476 . . . . . . . . 9  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ C  ->  B ] D  _d x  =  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )
112111oveq2d 6110 . . . . . . . 8  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  =  ( S__
[ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) ) )
11358ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  C ] D  _d x  +  ( S__ [ C  ->  A ] D  _d x  +  S__ [ A  ->  B ] D  _d x ) )  =  S__ [ A  ->  B ] D  _d x )
114112, 113eqtr2d 2476 . . . . . . 7  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  B ] D  _d x  =  ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x ) )
115114oveq1d 6109 . . . . . 6  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x )  =  ( ( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x ) )
11640ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  (
( S__ [ A  ->  C ] D  _d x  +  S__ [ C  ->  B ] D  _d x )  +  S__ [ B  ->  C ] D  _d x )  =  S__ [ A  ->  C ] D  _d x )
117115, 116eqtr2d 2476 . . . . 5  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
118117adantlr 714 . . . 4  |-  ( ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  /\  C  <_  B )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
11980, 81, 98, 118lecasei 9483 . . 3  |-  ( ( ( ph  /\  B  <_  A )  /\  C  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
12064, 65, 79, 119lecasei 9483 . 2  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  C ] D  _d x  =  ( S__
[ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
1217, 12, 63, 120lecasei 9483 1  |-  ( ph  ->  S__ [ A  ->  C ] D  _d x  =  ( S__ [ A  ->  B ] D  _d x  +  S__ [ B  ->  C ] D  _d x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4295    e. cmpt 4353  (class class class)co 6094   RRcr 9284   0cc0 9285    + caddc 9288    <_ cle 9422   -ucneg 9599   (,)cioo 11303   [,]cicc 11306   L^1cibl 21100   S__cdit 21324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-n0 10583  df-z 10650  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-rlim 12970  df-sum 13167  df-rest 14364  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-top 18506  df-bases 18508  df-topon 18509  df-cmp 18993  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-itg2 21104  df-ibl 21105  df-itg 21106  df-0p 21151  df-ditg 21325
This theorem is referenced by:  itgsubstlem  21523
  Copyright terms: Public domain W3C validator