MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgpos Structured version   Unicode version

Theorem ditgpos 21474
Description: Value of the directed integral in the forward direction. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypothesis
Ref Expression
ditgpos.1  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
ditgpos  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  =  S. ( A (,) B ) C  _d x )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    C( x)

Proof of Theorem ditgpos
StepHypRef Expression
1 df-ditg 21465 . 2  |-  S__ [ A  ->  B ] C  _d x  =  if ( A  <_  B ,  S. ( A (,) B
) C  _d x ,  -u S. ( B (,) A ) C  _d x )
2 ditgpos.1 . . 3  |-  ( ph  ->  A  <_  B )
3 iftrue 3908 . . 3  |-  ( A  <_  B  ->  if ( A  <_  B ,  S. ( A (,) B
) C  _d x ,  -u S. ( B (,) A ) C  _d x )  =  S. ( A (,) B ) C  _d x )
42, 3syl 16 . 2  |-  ( ph  ->  if ( A  <_  B ,  S. ( A (,) B ) C  _d x ,  -u S. ( B (,) A
) C  _d x )  =  S. ( A (,) B ) C  _d x )
51, 4syl5eq 2507 1  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  =  S. ( A (,) B ) C  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370   ifcif 3902   class class class wbr 4403  (class class class)co 6203    <_ cle 9534   -ucneg 9711   (,)cioo 11415   S.citg 21241   S__cdit 21464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-if 3903  df-ditg 21465
This theorem is referenced by:  ditgcl  21476  ditgswap  21477  ditgsplitlem  21478  ftc2ditglem  21660  itgsubstlem  21663  itgsubst  21664
  Copyright terms: Public domain W3C validator