MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ditgcl Structured version   Unicode version

Theorem ditgcl 21175
Description: Closure of a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
ditgcl.x  |-  ( ph  ->  X  e.  RR )
ditgcl.y  |-  ( ph  ->  Y  e.  RR )
ditgcl.a  |-  ( ph  ->  A  e.  ( X [,] Y ) )
ditgcl.b  |-  ( ph  ->  B  e.  ( X [,] Y ) )
ditgcl.c  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  V )
ditgcl.i  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  L^1 )
Assertion
Ref Expression
ditgcl  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
Distinct variable groups:    x, A    x, B    ph, x    x, V    x, X    x, Y
Allowed substitution hint:    C( x)

Proof of Theorem ditgcl
StepHypRef Expression
1 ditgcl.a . . . 4  |-  ( ph  ->  A  e.  ( X [,] Y ) )
2 ditgcl.x . . . . 5  |-  ( ph  ->  X  e.  RR )
3 ditgcl.y . . . . 5  |-  ( ph  ->  Y  e.  RR )
4 elicc2 11348 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
52, 3, 4syl2anc 654 . . . 4  |-  ( ph  ->  ( A  e.  ( X [,] Y )  <-> 
( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) ) )
61, 5mpbid 210 . . 3  |-  ( ph  ->  ( A  e.  RR  /\  X  <_  A  /\  A  <_  Y ) )
76simp1d 993 . 2  |-  ( ph  ->  A  e.  RR )
8 ditgcl.b . . . 4  |-  ( ph  ->  B  e.  ( X [,] Y ) )
9 elicc2 11348 . . . . 5  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
102, 3, 9syl2anc 654 . . . 4  |-  ( ph  ->  ( B  e.  ( X [,] Y )  <-> 
( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) ) )
118, 10mpbid 210 . . 3  |-  ( ph  ->  ( B  e.  RR  /\  X  <_  B  /\  B  <_  Y ) )
1211simp1d 993 . 2  |-  ( ph  ->  B  e.  RR )
13 simpr 458 . . . 4  |-  ( (
ph  /\  A  <_  B )  ->  A  <_  B )
1413ditgpos 21173 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] C  _d x  =  S. ( A (,) B ) C  _d x )
152rexrd 9421 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR* )
166simp2d 994 . . . . . . . . 9  |-  ( ph  ->  X  <_  A )
17 iooss1 11323 . . . . . . . . 9  |-  ( ( X  e.  RR*  /\  X  <_  A )  ->  ( A (,) B )  C_  ( X (,) B ) )
1815, 16, 17syl2anc 654 . . . . . . . 8  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) B ) )
193rexrd 9421 . . . . . . . . 9  |-  ( ph  ->  Y  e.  RR* )
2011simp3d 995 . . . . . . . . 9  |-  ( ph  ->  B  <_  Y )
21 iooss2 11324 . . . . . . . . 9  |-  ( ( Y  e.  RR*  /\  B  <_  Y )  ->  ( X (,) B )  C_  ( X (,) Y ) )
2219, 20, 21syl2anc 654 . . . . . . . 8  |-  ( ph  ->  ( X (,) B
)  C_  ( X (,) Y ) )
2318, 22sstrd 3354 . . . . . . 7  |-  ( ph  ->  ( A (,) B
)  C_  ( X (,) Y ) )
2423sselda 3344 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  ( X (,) Y ) )
25 ditgcl.c . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  C  e.  V )
2624, 25syldan 467 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  C  e.  V )
27 ioombl 20888 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
2827a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
29 ditgcl.i . . . . . 6  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  C )  e.  L^1 )
3023, 28, 25, 29iblss 21124 . . . . 5  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  C )  e.  L^1 )
3126, 30itgcl 21103 . . . 4  |-  ( ph  ->  S. ( A (,) B ) C  _d x  e.  CC )
3231adantr 462 . . 3  |-  ( (
ph  /\  A  <_  B )  ->  S. ( A (,) B ) C  _d x  e.  CC )
3314, 32eqeltrd 2507 . 2  |-  ( (
ph  /\  A  <_  B )  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
34 simpr 458 . . . 4  |-  ( (
ph  /\  B  <_  A )  ->  B  <_  A )
3512adantr 462 . . . 4  |-  ( (
ph  /\  B  <_  A )  ->  B  e.  RR )
367adantr 462 . . . 4  |-  ( (
ph  /\  B  <_  A )  ->  A  e.  RR )
3734, 35, 36ditgneg 21174 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  B ] C  _d x  =  -u S. ( B (,) A ) C  _d x )
3811simp2d 994 . . . . . . . . . 10  |-  ( ph  ->  X  <_  B )
39 iooss1 11323 . . . . . . . . . 10  |-  ( ( X  e.  RR*  /\  X  <_  B )  ->  ( B (,) A )  C_  ( X (,) A ) )
4015, 38, 39syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  ( B (,) A
)  C_  ( X (,) A ) )
416simp3d 995 . . . . . . . . . 10  |-  ( ph  ->  A  <_  Y )
42 iooss2 11324 . . . . . . . . . 10  |-  ( ( Y  e.  RR*  /\  A  <_  Y )  ->  ( X (,) A )  C_  ( X (,) Y ) )
4319, 41, 42syl2anc 654 . . . . . . . . 9  |-  ( ph  ->  ( X (,) A
)  C_  ( X (,) Y ) )
4440, 43sstrd 3354 . . . . . . . 8  |-  ( ph  ->  ( B (,) A
)  C_  ( X (,) Y ) )
4544sselda 3344 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B (,) A ) )  ->  x  e.  ( X (,) Y ) )
4645, 25syldan 467 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,) A ) )  ->  C  e.  V )
47 ioombl 20888 . . . . . . . 8  |-  ( B (,) A )  e. 
dom  vol
4847a1i 11 . . . . . . 7  |-  ( ph  ->  ( B (,) A
)  e.  dom  vol )
4944, 48, 25, 29iblss 21124 . . . . . 6  |-  ( ph  ->  ( x  e.  ( B (,) A ) 
|->  C )  e.  L^1 )
5046, 49itgcl 21103 . . . . 5  |-  ( ph  ->  S. ( B (,) A ) C  _d x  e.  CC )
5150negcld 9694 . . . 4  |-  ( ph  -> 
-u S. ( B (,) A ) C  _d x  e.  CC )
5251adantr 462 . . 3  |-  ( (
ph  /\  B  <_  A )  ->  -u S. ( B (,) A ) C  _d x  e.  CC )
5337, 52eqeltrd 2507 . 2  |-  ( (
ph  /\  B  <_  A )  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
547, 12, 33, 53lecasei 9468 1  |-  ( ph  ->  S__ [ A  ->  B ] C  _d x  e.  CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    e. wcel 1755    C_ wss 3316   class class class wbr 4280    e. cmpt 4338   dom cdm 4827  (class class class)co 6080   CCcc 9268   RRcr 9269   RR*cxr 9405    <_ cle 9407   -ucneg 9584   (,)cioo 11288   [,]cicc 11291   volcvol 20789   L^1cibl 20939   S.citg 20940   S__cdit 21163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-ofr 6310  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-n0 10568  df-z 10635  df-uz 10850  df-q 10942  df-rp 10980  df-xadd 11078  df-ioo 11292  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-rlim 12951  df-sum 13148  df-xmet 17654  df-met 17655  df-ovol 20790  df-vol 20791  df-mbf 20941  df-itg1 20942  df-itg2 20943  df-ibl 20944  df-itg 20945  df-0p 20990  df-ditg 21164
This theorem is referenced by:  ditgsplit  21178  itgsubstlem  21362
  Copyright terms: Public domain W3C validator