MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrsr Structured version   Unicode version

Theorem distrsr 9359
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
distrsr  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )

Proof of Theorem distrsr
Dummy variables  f 
g  h  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 9328 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 addsrpr 9343 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  +R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )
3 mulsrpr 9344 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( z  +P.  v )  e.  P.  /\  ( w  +P.  u
)  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. ( z  +P.  v ) ,  ( w  +P.  u ) >. ]  ~R  )  =  [ <. (
( x  .P.  (
z  +P.  v )
)  +P.  ( y  .P.  ( w  +P.  u
) ) ) ,  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v ) ) )
>. ]  ~R  )
4 mulsrpr 9344 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
5 mulsrpr 9344 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. v ,  u >. ]  ~R  )  =  [ <. (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )
6 addsrpr 9343 . . 3  |-  ( ( ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  /\  ( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P.  /\  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  +R  [ <. ( ( x  .P.  v
)  +P.  ( y  .P.  u ) ) ,  ( ( x  .P.  u )  +P.  (
y  .P.  v )
) >. ]  ~R  )  =  [ <. ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  +P.  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) ) ,  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) ) >. ]  ~R  )
7 addclpr 9288 . . . . 5  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  +P.  v
)  e.  P. )
8 addclpr 9288 . . . . 5  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  +P.  u
)  e.  P. )
97, 8anim12i 566 . . . 4  |-  ( ( ( z  e.  P.  /\  v  e.  P. )  /\  ( w  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
109an4s 822 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  v )  e.  P.  /\  ( w  +P.  u )  e. 
P. ) )
11 mulclpr 9290 . . . . . 6  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
12 mulclpr 9290 . . . . . 6  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
13 addclpr 9288 . . . . . 6  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
1411, 12, 13syl2an 477 . . . . 5  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
1514an4s 822 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
16 mulclpr 9290 . . . . . 6  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
17 mulclpr 9290 . . . . . 6  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
18 addclpr 9288 . . . . . 6  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1916, 17, 18syl2an 477 . . . . 5  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2019an42s 823 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
2115, 20jca 532 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
22 mulclpr 9290 . . . . . 6  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
23 mulclpr 9290 . . . . . 6  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
24 addclpr 9288 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
2522, 23, 24syl2an 477 . . . . 5  |-  ( ( ( x  e.  P.  /\  v  e.  P. )  /\  ( y  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
2625an4s 822 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
27 mulclpr 9290 . . . . . 6  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
28 mulclpr 9290 . . . . . 6  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
29 addclpr 9288 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3027, 28, 29syl2an 477 . . . . 5  |-  ( ( ( x  e.  P.  /\  u  e.  P. )  /\  ( y  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3130an42s 823 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
3226, 31jca 532 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  .P.  v
)  +P.  ( y  .P.  u ) )  e. 
P.  /\  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. ) )
33 distrpr 9298 . . . . 5  |-  ( x  .P.  ( z  +P.  v ) )  =  ( ( x  .P.  z )  +P.  (
x  .P.  v )
)
34 distrpr 9298 . . . . 5  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
3533, 34oveq12i 6202 . . . 4  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( x  .P.  v
) )  +P.  (
( y  .P.  w
)  +P.  ( y  .P.  u ) ) )
36 ovex 6215 . . . . 5  |-  ( x  .P.  z )  e. 
_V
37 ovex 6215 . . . . 5  |-  ( x  .P.  v )  e. 
_V
38 ovex 6215 . . . . 5  |-  ( y  .P.  w )  e. 
_V
39 addcompr 9291 . . . . 5  |-  ( f  +P.  g )  =  ( g  +P.  f
)
40 addasspr 9292 . . . . 5  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
41 ovex 6215 . . . . 5  |-  ( y  .P.  u )  e. 
_V
4236, 37, 38, 39, 40, 41caov4 6394 . . . 4  |-  ( ( ( x  .P.  z
)  +P.  ( x  .P.  v ) )  +P.  ( ( y  .P.  w )  +P.  (
y  .P.  u )
) )  =  ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  +P.  ( (
x  .P.  v )  +P.  ( y  .P.  u
) ) )
4335, 42eqtri 2480 . . 3  |-  ( ( x  .P.  ( z  +P.  v ) )  +P.  ( y  .P.  ( w  +P.  u
) ) )  =  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  +P.  (
( x  .P.  v
)  +P.  ( y  .P.  u ) ) )
44 distrpr 9298 . . . . 5  |-  ( x  .P.  ( w  +P.  u ) )  =  ( ( x  .P.  w )  +P.  (
x  .P.  u )
)
45 distrpr 9298 . . . . 5  |-  ( y  .P.  ( z  +P.  v ) )  =  ( ( y  .P.  z )  +P.  (
y  .P.  v )
)
4644, 45oveq12i 6202 . . . 4  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( x  .P.  u
) )  +P.  (
( y  .P.  z
)  +P.  ( y  .P.  v ) ) )
47 ovex 6215 . . . . 5  |-  ( x  .P.  w )  e. 
_V
48 ovex 6215 . . . . 5  |-  ( x  .P.  u )  e. 
_V
49 ovex 6215 . . . . 5  |-  ( y  .P.  z )  e. 
_V
50 ovex 6215 . . . . 5  |-  ( y  .P.  v )  e. 
_V
5147, 48, 49, 39, 40, 50caov4 6394 . . . 4  |-  ( ( ( x  .P.  w
)  +P.  ( x  .P.  u ) )  +P.  ( ( y  .P.  z )  +P.  (
y  .P.  v )
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( (
x  .P.  u )  +P.  ( y  .P.  v
) ) )
5246, 51eqtri 2480 . . 3  |-  ( ( x  .P.  ( w  +P.  u ) )  +P.  ( y  .P.  ( z  +P.  v
) ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) )
531, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52ecovdi 7313 . 2  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) ) )
54 dmaddsr 9353 . . 3  |-  dom  +R  =  ( R.  X.  R. )
55 0nsr 9347 . . 3  |-  -.  (/)  e.  R.
56 dmmulsr 9354 . . 3  |-  dom  .R  =  ( R.  X.  R. )
5754, 55, 56ndmovdistr 6352 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C
) ) )
5853, 57pm2.61i 164 1  |-  ( A  .R  ( B  +R  C ) )  =  ( ( A  .R  B )  +R  ( A  .R  C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758  (class class class)co 6190   P.cnp 9127    +P. cpp 9129    .P. cmp 9130    ~R cer 9134   R.cnr 9135    +R cplr 9139    .R cmr 9140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-omul 7025  df-er 7201  df-ec 7203  df-qs 7207  df-ni 9142  df-pli 9143  df-mi 9144  df-lti 9145  df-plpq 9178  df-mpq 9179  df-ltpq 9180  df-enq 9181  df-nq 9182  df-erq 9183  df-plq 9184  df-mq 9185  df-1nq 9186  df-rq 9187  df-ltnq 9188  df-np 9251  df-plp 9253  df-mp 9254  df-ltp 9255  df-plpr 9325  df-mpr 9326  df-enr 9327  df-nr 9328  df-plr 9329  df-mr 9330
This theorem is referenced by:  pn0sr  9369  axmulass  9425  axdistr  9426
  Copyright terms: Public domain W3C validator