MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrpi Structured version   Unicode version

Theorem distrpi 9306
Description: Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
distrpi  |-  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) )

Proof of Theorem distrpi
StepHypRef Expression
1 pinn 9286 . . . 4  |-  ( A  e.  N.  ->  A  e.  om )
2 pinn 9286 . . . 4  |-  ( B  e.  N.  ->  B  e.  om )
3 pinn 9286 . . . 4  |-  ( C  e.  N.  ->  C  e.  om )
4 nndi 7309 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
51, 2, 3, 4syl3an 1272 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
6 addclpi 9300 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  e.  N. )
7 mulpiord 9293 . . . . . 6  |-  ( ( A  e.  N.  /\  ( B  +N  C
)  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( A  .o  ( B  +N  C
) ) )
86, 7sylan2 472 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  +N  C
) )  =  ( A  .o  ( B  +N  C ) ) )
9 addpiord 9292 . . . . . . 7  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( B  +N  C
)  =  ( B  +o  C ) )
109oveq2d 6294 . . . . . 6  |-  ( ( B  e.  N.  /\  C  e.  N. )  ->  ( A  .o  ( B  +N  C ) )  =  ( A  .o  ( B  +o  C
) ) )
1110adantl 464 . . . . 5  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .o  ( B  +N  C
) )  =  ( A  .o  ( B  +o  C ) ) )
128, 11eqtrd 2443 . . . 4  |-  ( ( A  e.  N.  /\  ( B  e.  N.  /\  C  e.  N. )
)  ->  ( A  .N  ( B  +N  C
) )  =  ( A  .o  ( B  +o  C ) ) )
13123impb 1193 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( A  .o  ( B  +o  C ) ) )
14 mulclpi 9301 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  e.  N. )
15 mulclpi 9301 . . . . . 6  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  e.  N. )
16 addpiord 9292 . . . . . 6  |-  ( ( ( A  .N  B
)  e.  N.  /\  ( A  .N  C
)  e.  N. )  ->  ( ( A  .N  B )  +N  ( A  .N  C ) )  =  ( ( A  .N  B )  +o  ( A  .N  C
) ) )
1714, 15, 16syl2an 475 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  B )  +N  ( A  .N  C
) )  =  ( ( A  .N  B
)  +o  ( A  .N  C ) ) )
18 mulpiord 9293 . . . . . 6  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  .N  B
)  =  ( A  .o  B ) )
19 mulpiord 9293 . . . . . 6  |-  ( ( A  e.  N.  /\  C  e.  N. )  ->  ( A  .N  C
)  =  ( A  .o  C ) )
2018, 19oveqan12d 6297 . . . . 5  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  B )  +o  ( A  .N  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) )
2117, 20eqtrd 2443 . . . 4  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( A  e.  N.  /\  C  e.  N. )
)  ->  ( ( A  .N  B )  +N  ( A  .N  C
) )  =  ( ( A  .o  B
)  +o  ( A  .o  C ) ) )
22213impdi 1285 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  (
( A  .N  B
)  +N  ( A  .N  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C
) ) )
235, 13, 223eqtr4d 2453 . 2  |-  ( ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) ) )
24 dmaddpi 9298 . . 3  |-  dom  +N  =  ( N.  X.  N. )
25 0npi 9290 . . 3  |-  -.  (/)  e.  N.
26 dmmulpi 9299 . . 3  |-  dom  .N  =  ( N.  X.  N. )
2724, 25, 26ndmovdistr 6445 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N.  /\  C  e.  N. )  ->  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C
) ) )
2823, 27pm2.61i 164 1  |-  ( A  .N  ( B  +N  C ) )  =  ( ( A  .N  B )  +N  ( A  .N  C ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842  (class class class)co 6278   omcom 6683    +o coa 7164    .o comu 7165   N.cnpi 9252    +N cpli 9253    .N cmi 9254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-oadd 7171  df-omul 7172  df-ni 9280  df-pli 9281  df-mi 9282
This theorem is referenced by:  adderpqlem  9362  addassnq  9366  distrnq  9369  ltanq  9379  ltexnq  9383
  Copyright terms: Public domain W3C validator