MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrnq Structured version   Unicode version

Theorem distrnq 9338
Description: Multiplication of positive fractions is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrnq  |-  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) )

Proof of Theorem distrnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcompi 9273 . . . . . . . . . . . . 13  |-  ( ( 1st `  A )  .N  ( 1st `  B
) )  =  ( ( 1st `  B
)  .N  ( 1st `  A ) )
21oveq1i 6293 . . . . . . . . . . . 12  |-  ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 1st `  B )  .N  ( 1st `  A
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  C ) ) )
3 fvex 5875 . . . . . . . . . . . . 13  |-  ( 1st `  B )  e.  _V
4 fvex 5875 . . . . . . . . . . . . 13  |-  ( 1st `  A )  e.  _V
5 fvex 5875 . . . . . . . . . . . . 13  |-  ( 2nd `  A )  e.  _V
6 mulcompi 9273 . . . . . . . . . . . . 13  |-  ( x  .N  y )  =  ( y  .N  x
)
7 mulasspi 9274 . . . . . . . . . . . . 13  |-  ( ( x  .N  y )  .N  z )  =  ( x  .N  (
y  .N  z ) )
8 fvex 5875 . . . . . . . . . . . . 13  |-  ( 2nd `  C )  e.  _V
93, 4, 5, 6, 7, 8caov411 6490 . . . . . . . . . . . 12  |-  ( ( ( 1st `  B
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A )  .N  ( 1st `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
102, 9eqtri 2496 . . . . . . . . . . 11  |-  ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( ( 2nd `  A )  .N  ( 1st `  A
) )  .N  (
( 1st `  B
)  .N  ( 2nd `  C ) ) )
11 mulcompi 9273 . . . . . . . . . . . . 13  |-  ( ( 1st `  A )  .N  ( 1st `  C
) )  =  ( ( 1st `  C
)  .N  ( 1st `  A ) )
1211oveq1i 6293 . . . . . . . . . . . 12  |-  ( ( ( 1st `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 1st `  C )  .N  ( 1st `  A
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) )
13 fvex 5875 . . . . . . . . . . . . 13  |-  ( 1st `  C )  e.  _V
14 fvex 5875 . . . . . . . . . . . . 13  |-  ( 2nd `  B )  e.  _V
1513, 4, 5, 6, 7, 14caov411 6490 . . . . . . . . . . . 12  |-  ( ( ( 1st `  C
)  .N  ( 1st `  A ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  A )  .N  ( 1st `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
1612, 15eqtri 2496 . . . . . . . . . . 11  |-  ( ( ( 1st `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) )  =  ( ( ( 2nd `  A )  .N  ( 1st `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )
1710, 16oveq12i 6295 . . . . . . . . . 10  |-  ( ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  A
)  .N  ( 1st `  A ) )  .N  ( ( 1st `  B
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 2nd `  A )  .N  ( 1st `  A
) )  .N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) )
18 distrpi 9275 . . . . . . . . . 10  |-  ( ( ( 2nd `  A
)  .N  ( 1st `  A ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) )  =  ( ( ( ( 2nd `  A )  .N  ( 1st `  A ) )  .N  ( ( 1st `  B )  .N  ( 2nd `  C ) ) )  +N  ( ( ( 2nd `  A
)  .N  ( 1st `  A ) )  .N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) )
19 mulasspi 9274 . . . . . . . . . 10  |-  ( ( ( 2nd `  A
)  .N  ( 1st `  A ) )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) )  =  ( ( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) )
2017, 18, 193eqtr2i 2502 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) ) )  =  ( ( 2nd `  A )  .N  ( ( 1st `  A )  .N  (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) )
21 mulasspi 9274 . . . . . . . . . 10  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( 2nd `  A )  .N  (
( 2nd `  B
)  .N  ( ( 2nd `  A )  .N  ( 2nd `  C
) ) ) )
2214, 5, 8, 6, 7caov12 6486 . . . . . . . . . . 11  |-  ( ( 2nd `  B )  .N  ( ( 2nd `  A )  .N  ( 2nd `  C ) ) )  =  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) )
2322oveq2i 6294 . . . . . . . . . 10  |-  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  (
( 2nd `  A
)  .N  ( 2nd `  C ) ) ) )  =  ( ( 2nd `  A )  .N  ( ( 2nd `  A )  .N  (
( 2nd `  B
)  .N  ( 2nd `  C ) ) ) )
2421, 23eqtri 2496 . . . . . . . . 9  |-  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )  =  ( ( 2nd `  A )  .N  (
( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) ) )
2520, 24opeq12i 4218 . . . . . . . 8  |-  <. (
( ( ( 1st `  A )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A )  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )
>.  =  <. ( ( 2nd `  A )  .N  ( ( 1st `  A )  .N  (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) ) >.
26 elpqn 9302 . . . . . . . . . . 11  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
27263ad2ant1 1017 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  e.  ( N.  X.  N. ) )
28 xp2nd 6815 . . . . . . . . . 10  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
2927, 28syl 16 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  A )  e. 
N. )
30 xp1st 6814 . . . . . . . . . . 11  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
3127, 30syl 16 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  A )  e. 
N. )
32 elpqn 9302 . . . . . . . . . . . . . 14  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
33323ad2ant2 1018 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  B  e.  ( N.  X.  N. ) )
34 xp1st 6814 . . . . . . . . . . . . 13  |-  ( B  e.  ( N.  X.  N. )  ->  ( 1st `  B )  e.  N. )
3533, 34syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  B )  e. 
N. )
36 elpqn 9302 . . . . . . . . . . . . . 14  |-  ( C  e.  Q.  ->  C  e.  ( N.  X.  N. ) )
37363ad2ant3 1019 . . . . . . . . . . . . 13  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  C  e.  ( N.  X.  N. ) )
38 xp2nd 6815 . . . . . . . . . . . . 13  |-  ( C  e.  ( N.  X.  N. )  ->  ( 2nd `  C )  e.  N. )
3937, 38syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  C )  e. 
N. )
40 mulclpi 9270 . . . . . . . . . . . 12  |-  ( ( ( 1st `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
4135, 39, 40syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
42 xp1st 6814 . . . . . . . . . . . . 13  |-  ( C  e.  ( N.  X.  N. )  ->  ( 1st `  C )  e.  N. )
4337, 42syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 1st `  C )  e. 
N. )
44 xp2nd 6815 . . . . . . . . . . . . 13  |-  ( B  e.  ( N.  X.  N. )  ->  ( 2nd `  B )  e.  N. )
4533, 44syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( 2nd `  B )  e. 
N. )
46 mulclpi 9270 . . . . . . . . . . . 12  |-  ( ( ( 1st `  C
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 1st `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
4743, 45, 46syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  C
)  .N  ( 2nd `  B ) )  e. 
N. )
48 addclpi 9269 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  e. 
N.  /\  ( ( 1st `  C )  .N  ( 2nd `  B
) )  e.  N. )  ->  ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
4941, 47, 48syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N. )
50 mulclpi 9270 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) )  e.  N. )  ->  ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) )  e.  N. )
5131, 49, 50syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) )  e.  N. )
52 mulclpi 9270 . . . . . . . . . . 11  |-  ( ( ( 2nd `  B
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
5345, 39, 52syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )
54 mulclpi 9270 . . . . . . . . . 10  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( ( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. )  ->  (
( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  e. 
N. )
5529, 53, 54syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  e. 
N. )
56 mulcanenq 9337 . . . . . . . . 9  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) )  e.  N.  /\  ( ( 2nd `  A
)  .N  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) )  e. 
N. )  ->  <. (
( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) ) >.  ~Q  <. ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) >. )
5729, 51, 55, 56syl3anc 1228 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  <. (
( 2nd `  A
)  .N  ( ( 1st `  A )  .N  ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ) ,  ( ( 2nd `  A
)  .N  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) ) >.  ~Q  <. ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) >. )
5825, 57syl5eqbr 4480 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  <. (
( ( ( 1st `  A )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A )  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )
>.  ~Q  <. ( ( 1st `  A )  .N  (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) >. )
59 mulpipq2 9316 . . . . . . . . . 10  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
6027, 33, 59syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  B )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.
)
61 mulpipq2 9316 . . . . . . . . . 10  |-  ( ( A  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  C )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.
)
6227, 37, 61syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  C )  = 
<. ( ( 1st `  A
)  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) >.
)
6360, 62oveq12d 6301 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) )  =  ( <. ( ( 1st `  A )  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  B ) )
>.  +pQ  <. ( ( 1st `  A )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C ) )
>. ) )
64 mulclpi 9270 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  B )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
6531, 35, 64syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  A
)  .N  ( 1st `  B ) )  e. 
N. )
66 mulclpi 9270 . . . . . . . . . 10  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  B )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
6729, 45, 66syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )
68 mulclpi 9270 . . . . . . . . . 10  |-  ( ( ( 1st `  A
)  e.  N.  /\  ( 1st `  C )  e.  N. )  -> 
( ( 1st `  A
)  .N  ( 1st `  C ) )  e. 
N. )
6931, 43, 68syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 1st `  A
)  .N  ( 1st `  C ) )  e. 
N. )
70 mulclpi 9270 . . . . . . . . . 10  |-  ( ( ( 2nd `  A
)  e.  N.  /\  ( 2nd `  C )  e.  N. )  -> 
( ( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )
7129, 39, 70syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( 2nd `  A
)  .N  ( 2nd `  C ) )  e. 
N. )
72 addpipq 9314 . . . . . . . . 9  |-  ( ( ( ( ( 1st `  A )  .N  ( 1st `  B ) )  e.  N.  /\  (
( 2nd `  A
)  .N  ( 2nd `  B ) )  e. 
N. )  /\  (
( ( 1st `  A
)  .N  ( 1st `  C ) )  e. 
N.  /\  ( ( 2nd `  A )  .N  ( 2nd `  C
) )  e.  N. ) )  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  +pQ  <. ( ( 1st `  A )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C ) )
>. )  =  <. ( ( ( ( 1st `  A )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A )  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )
>. )
7365, 67, 69, 71, 72syl22anc 1229 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( ( 1st `  A
)  .N  ( 1st `  B ) ) ,  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) >.  +pQ  <. ( ( 1st `  A )  .N  ( 1st `  C ) ) ,  ( ( 2nd `  A )  .N  ( 2nd `  C ) )
>. )  =  <. ( ( ( ( 1st `  A )  .N  ( 1st `  B ) )  .N  ( ( 2nd `  A )  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A
)  .N  ( 1st `  C ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )
>. )
7463, 73eqtrd 2508 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) )  = 
<. ( ( ( ( 1st `  A )  .N  ( 1st `  B
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  C ) ) )  +N  ( ( ( 1st `  A )  .N  ( 1st `  C
) )  .N  (
( 2nd `  A
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( ( 2nd `  A
)  .N  ( 2nd `  B ) )  .N  ( ( 2nd `  A
)  .N  ( 2nd `  C ) ) )
>. )
75 relxp 5109 . . . . . . . . . 10  |-  Rel  ( N.  X.  N. )
76 1st2nd 6830 . . . . . . . . . 10  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
7775, 27, 76sylancr 663 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
78 addpipq2 9313 . . . . . . . . . 10  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  +pQ  C )  = 
<. ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) >. )
7933, 37, 78syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +pQ  C )  = 
<. ( ( ( 1st `  B )  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C )  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C
) ) >. )
8077, 79oveq12d 6301 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  +pQ  C ) )  =  (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. ) )
81 mulpipq 9317 . . . . . . . . 9  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( ( ( ( 1st `  B )  .N  ( 2nd `  C
) )  +N  (
( 1st `  C
)  .N  ( 2nd `  B ) ) )  e.  N.  /\  (
( 2nd `  B
)  .N  ( 2nd `  C ) )  e. 
N. ) )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. )  =  <. ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) >. )
8231, 29, 49, 53, 81syl22anc 1229 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. (
( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ,  ( ( 2nd `  B )  .N  ( 2nd `  C ) )
>. )  =  <. ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) >. )
8380, 82eqtrd 2508 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  +pQ  C ) )  =  <. ( ( 1st `  A
)  .N  ( ( ( 1st `  B
)  .N  ( 2nd `  C ) )  +N  ( ( 1st `  C
)  .N  ( 2nd `  B ) ) ) ) ,  ( ( 2nd `  A )  .N  ( ( 2nd `  B )  .N  ( 2nd `  C ) ) ) >. )
8458, 74, 833brtr4d 4477 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) )  ~Q  ( A  .pQ  ( B 
+pQ  C ) ) )
85 mulpqf 9323 . . . . . . . . . 10  |-  .pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
8685fovcl 6390 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  B )  e.  ( N.  X.  N. ) )
8727, 33, 86syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  B )  e.  ( N.  X.  N. ) )
8885fovcl 6390 . . . . . . . . 9  |-  ( ( A  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  C )  e.  ( N.  X.  N. ) )
8927, 37, 88syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  C )  e.  ( N.  X.  N. ) )
90 addpqf 9321 . . . . . . . . 9  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
9190fovcl 6390 . . . . . . . 8  |-  ( ( ( A  .pQ  B
)  e.  ( N. 
X.  N. )  /\  ( A  .pQ  C )  e.  ( N.  X.  N. ) )  ->  (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) )  e.  ( N.  X.  N. ) )
9287, 89, 91syl2anc 661 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) )  e.  ( N.  X.  N. ) )
9390fovcl 6390 . . . . . . . . 9  |-  ( ( B  e.  ( N. 
X.  N. )  /\  C  e.  ( N.  X.  N. ) )  ->  ( B  +pQ  C )  e.  ( N.  X.  N. ) )
9433, 37, 93syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +pQ  C )  e.  ( N.  X.  N. ) )
9585fovcl 6390 . . . . . . . 8  |-  ( ( A  e.  ( N. 
X.  N. )  /\  ( B  +pQ  C )  e.  ( N.  X.  N. ) )  ->  ( A  .pQ  ( B  +pQ  C ) )  e.  ( N.  X.  N. )
)
9627, 94, 95syl2anc 661 . . . . . . 7  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .pQ  ( B  +pQ  C ) )  e.  ( N.  X.  N. )
)
97 nqereq 9312 . . . . . . 7  |-  ( ( ( ( A  .pQ  B )  +pQ  ( A 
.pQ  C ) )  e.  ( N.  X.  N. )  /\  ( A  .pQ  ( B  +pQ  C ) )  e.  ( N.  X.  N. )
)  ->  ( (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) )  ~Q  ( A  .pQ  ( B 
+pQ  C ) )  <-> 
( /Q `  (
( A  .pQ  B
)  +pQ  ( A  .pQ  C ) ) )  =  ( /Q `  ( A  .pQ  ( B 
+pQ  C ) ) ) ) )
9892, 96, 97syl2anc 661 . . . . . 6  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( ( A  .pQ  B )  +pQ  ( A 
.pQ  C ) )  ~Q  ( A  .pQ  ( B  +pQ  C ) )  <->  ( /Q `  ( ( A  .pQ  B )  +pQ  ( A 
.pQ  C ) ) )  =  ( /Q
`  ( A  .pQ  ( B  +pQ  C ) ) ) ) )
9984, 98mpbid 210 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( /Q `  ( ( A 
.pQ  B )  +pQ  ( A  .pQ  C ) ) )  =  ( /Q `  ( A 
.pQ  ( B  +pQ  C ) ) ) )
10099eqcomd 2475 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( /Q `  ( A  .pQ  ( B  +pQ  C ) ) )  =  ( /Q `  ( ( A  .pQ  B ) 
+pQ  ( A  .pQ  C ) ) ) )
101 mulerpq 9334 . . . 4  |-  ( ( /Q `  A )  .Q  ( /Q `  ( B  +pQ  C ) ) )  =  ( /Q `  ( A 
.pQ  ( B  +pQ  C ) ) )
102 adderpq 9333 . . . 4  |-  ( ( /Q `  ( A 
.pQ  B ) )  +Q  ( /Q `  ( A  .pQ  C ) ) )  =  ( /Q `  ( ( A  .pQ  B ) 
+pQ  ( A  .pQ  C ) ) )
103100, 101, 1023eqtr4g 2533 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( /Q `  A
)  .Q  ( /Q
`  ( B  +pQ  C ) ) )  =  ( ( /Q `  ( A  .pQ  B ) )  +Q  ( /Q
`  ( A  .pQ  C ) ) ) )
104 nqerid 9310 . . . . . 6  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
105104eqcomd 2475 . . . . 5  |-  ( A  e.  Q.  ->  A  =  ( /Q `  A ) )
1061053ad2ant1 1017 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  A  =  ( /Q `  A ) )
107 addpqnq 9315 . . . . 5  |-  ( ( B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +Q  C
)  =  ( /Q
`  ( B  +pQ  C ) ) )
1081073adant1 1014 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( B  +Q  C )  =  ( /Q `  ( B  +pQ  C ) ) )
109106, 108oveq12d 6301 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( /Q `  A )  .Q  ( /Q `  ( B  +pQ  C ) ) ) )
110 mulpqnq 9318 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  .Q  B
)  =  ( /Q
`  ( A  .pQ  B ) ) )
1111103adant3 1016 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  B )  =  ( /Q `  ( A  .pQ  B ) ) )
112 mulpqnq 9318 . . . . 5  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  C
)  =  ( /Q
`  ( A  .pQ  C ) ) )
1131123adant2 1015 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  C )  =  ( /Q `  ( A  .pQ  C ) ) )
114111, 113oveq12d 6301 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  (
( A  .Q  B
)  +Q  ( A  .Q  C ) )  =  ( ( /Q
`  ( A  .pQ  B ) )  +Q  ( /Q `  ( A  .pQ  C ) ) ) )
115103, 109, 1143eqtr4d 2518 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) ) )
116 addnqf 9325 . . . 4  |-  +Q  :
( Q.  X.  Q. )
--> Q.
117116fdmi 5735 . . 3  |-  dom  +Q  =  ( Q.  X.  Q. )
118 0nnq 9301 . . 3  |-  -.  (/)  e.  Q.
119 mulnqf 9326 . . . 4  |-  .Q  :
( Q.  X.  Q. )
--> Q.
120119fdmi 5735 . . 3  |-  dom  .Q  =  ( Q.  X.  Q. )
121117, 118, 120ndmovdistr 6447 . 2  |-  ( -.  ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C
) ) )
122115, 121pm2.61i 164 1  |-  ( A  .Q  ( B  +Q  C ) )  =  ( ( A  .Q  B )  +Q  ( A  .Q  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 973    = wceq 1379    e. wcel 1767   <.cop 4033   class class class wbr 4447    X. cxp 4997   Rel wrel 5004   ` cfv 5587  (class class class)co 6283   1stc1st 6782   2ndc2nd 6783   N.cnpi 9221    +N cpli 9222    .N cmi 9223    +pQ cplpq 9225    .pQ cmpq 9226    ~Q ceq 9228   Q.cnq 9229   /Qcerq 9231    +Q cplq 9232    .Q cmq 9233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-omul 7135  df-er 7311  df-ni 9249  df-pli 9250  df-mi 9251  df-lti 9252  df-plpq 9285  df-mpq 9286  df-enq 9288  df-nq 9289  df-erq 9290  df-plq 9291  df-mq 9292  df-1nq 9293
This theorem is referenced by:  ltaddnq  9351  halfnq  9353  addclprlem2  9394  distrlem1pr  9402  distrlem4pr  9403  prlem934  9410  prlem936  9424
  Copyright terms: Public domain W3C validator