MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Structured version   Unicode version

Theorem distrlem1pr 9186
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  C_  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) )

Proof of Theorem distrlem1pr
Dummy variables  x  y  z  w  v 
f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 9179 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-mp 9145 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  { f  |  E. g  e.  y  E. h  e.  z  f  =  ( g  .Q  h ) } )
3 mulclnq 9108 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelv 9161 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 474 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v ) ) )
653impb 1183 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  <->  E. x  e.  A  E. v  e.  ( B  +P.  C
) w  =  ( x  .Q  v ) ) )
7 df-plp 9144 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  { f  |  E. g  e.  w  E. h  e.  x  f  =  ( g  +Q  h ) } )
8 addclnq 9106 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelv 9161 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z ) ) )
1093adant1 1006 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z
) ) )
1110adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
v  e.  ( B  +P.  C )  <->  E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z
) ) )
12 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
13 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
14 oveq2 6094 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
1514eqeq2d 2449 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
1615biimpac 486 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
17 distrnq 9122 . . . . . . . . . . . . 13  |-  ( x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) )
1816, 17syl6eq 2486 . . . . . . . . . . . 12  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
1912, 13, 18syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  w  =  ( ( x  .Q  y
)  +Q  ( x  .Q  z ) ) )
20 mulclpr 9181 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
21203adant3 1008 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
2221ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( A  .P.  B )  e.  P. )
23 mulclpr 9181 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
24233adant2 1007 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
2524ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( A  .P.  C )  e.  P. )
26 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  y  e.  B )
272, 3genpprecl 9162 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  (
x  .Q  y )  e.  ( A  .P.  B ) ) )
28273adant3 1008 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( x  .Q  y )  e.  ( A  .P.  B ) ) )
2928impl 620 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  .Q  y )  e.  ( A  .P.  B ) )
3029adantlrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  B )  ->  ( x  .Q  y
)  e.  ( A  .P.  B ) )
3126, 30sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( x  .Q  y )  e.  ( A  .P.  B ) )
32 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  B  /\  z  e.  C
)  /\  v  =  ( y  +Q  z
) )  ->  z  e.  C )
332, 3genpprecl 9162 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  A  /\  z  e.  C )  ->  (
x  .Q  z )  e.  ( A  .P.  C ) ) )
34333adant2 1007 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  z  e.  C
)  ->  ( x  .Q  z )  e.  ( A  .P.  C ) ) )
3534impl 620 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  A
)  /\  z  e.  C )  ->  (
x  .Q  z )  e.  ( A  .P.  C ) )
3635adantlrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  C )  ->  ( x  .Q  z
)  e.  ( A  .P.  C ) )
3732, 36sylan2 474 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( x  .Q  z )  e.  ( A  .P.  C ) )
387, 8genpprecl 9162 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( A  .P.  B
)  /\  ( x  .Q  z )  e.  ( A  .P.  C ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
3938imp 429 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( A  .P.  B )  /\  ( x  .Q  z )  e.  ( A  .P.  C ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )
4022, 25, 31, 37, 39syl22anc 1219 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  ( ( x  .Q  y )  +Q  ( x  .Q  z
) )  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
4119, 40eqeltrd 2512 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  B  /\  z  e.  C )  /\  v  =  ( y  +Q  z ) ) )  ->  w  e.  ( ( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
4241exp32 605 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
( y  e.  B  /\  z  e.  C
)  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
4342rexlimdvv 2842 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  ( E. y  e.  B  E. z  e.  C  v  =  ( y  +Q  z )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
4411, 43sylbid 215 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  A  /\  w  =  (
x  .Q  v ) ) )  ->  (
v  e.  ( B  +P.  C )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
4544exp32 605 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  A  -> 
( w  =  ( x  .Q  v )  ->  ( v  e.  ( B  +P.  C
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) )
4645com34 83 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  A  -> 
( v  e.  ( B  +P.  C )  ->  ( w  =  ( x  .Q  v
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) )
4746impd 431 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  A  /\  v  e.  ( B  +P.  C ) )  ->  ( w  =  ( x  .Q  v
)  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
4847rexlimdvv 2842 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  A  E. v  e.  ( B  +P.  C ) w  =  ( x  .Q  v )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
496, 48sylbid 215 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( A  .P.  ( B  +P.  C ) )  ->  w  e.  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
5049ssrdv 3357 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  C_  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2711    C_ wss 3323  (class class class)co 6086    +Q cplq 9014    .Q cmq 9015   P.cnp 9018    +P. cpp 9020    .P. cmp 9021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-omul 6917  df-er 7093  df-ni 9033  df-pli 9034  df-mi 9035  df-lti 9036  df-plpq 9069  df-mpq 9070  df-ltpq 9071  df-enq 9072  df-nq 9073  df-erq 9074  df-plq 9075  df-mq 9076  df-1nq 9077  df-rq 9078  df-ltnq 9079  df-np 9142  df-plp 9144  df-mp 9145
This theorem is referenced by:  distrpr  9189
  Copyright terms: Public domain W3C validator