![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > distopon | Structured version Unicode version |
Description: The discrete topology on
a set ![]() |
Ref | Expression |
---|---|
distopon |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop 18733 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | unipw 4651 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2467 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | istopon 18663 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 1, 4, 5 | sylanbrc 664 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1955 ax-ext 2432 ax-sep 4522 ax-nul 4530 ax-pow 4579 ax-pr 4640 ax-un 6483 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2266 df-mo 2267 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2604 df-ne 2650 df-ral 2804 df-rex 2805 df-rab 2808 df-v 3080 df-sbc 3295 df-dif 3440 df-un 3442 df-in 3444 df-ss 3451 df-nul 3747 df-if 3901 df-pw 3971 df-sn 3987 df-pr 3989 df-op 3993 df-uni 4201 df-br 4402 df-opab 4460 df-mpt 4461 df-id 4745 df-xp 4955 df-rel 4956 df-cnv 4957 df-co 4958 df-dm 4959 df-iota 5490 df-fun 5529 df-fv 5535 df-top 18636 df-topon 18639 |
This theorem is referenced by: sn0topon 18735 toponmre 18830 cndis 19028 txdis1cn 19341 xkofvcn 19390 distgp 19803 symgtgp 19805 |
Copyright terms: Public domain | W3C validator |