Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dissym1 Structured version   Unicode version

Theorem dissym1 29813
Description: A symmetry with  \/.

See negsym1 29809 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

Assertion
Ref Expression
dissym1  |-  ( ( ps  \/  ( ps  \/ F.  ) )  ->  ( ps  \/  ph ) )

Proof of Theorem dissym1
StepHypRef Expression
1 orc 385 . 2  |-  ( ps 
->  ( ps  \/  ph ) )
2 falim 1393 . . 3  |-  ( F. 
->  ph )
32orim2i 518 . 2  |-  ( ( ps  \/ F.  )  ->  ( ps  \/  ph ) )
41, 3jaoi 379 1  |-  ( ( ps  \/  ( ps  \/ F.  ) )  ->  ( ps  \/  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368   F. wfal 1384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-tru 1382  df-fal 1385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator