MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Unicode version

Theorem dislly 19792
Description: The discrete space  ~P X is locally  A if and only if every singleton space has property 
A. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly  |-  ( X  e.  V  ->  ( ~P X  e. Locally  A  <->  A. x  e.  X  ~P { x }  e.  A )
)
Distinct variable groups:    x, A    x, V    x, X

Proof of Theorem dislly
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ~P X  e. Locally  A )
2 simpr 461 . . . . . 6  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  x  e.  X )
3 vex 3116 . . . . . . 7  |-  x  e. 
_V
43snelpw 4693 . . . . . 6  |-  ( x  e.  X  <->  { x }  e.  ~P X
)
52, 4sylib 196 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  { x }  e.  ~P X
)
6 ssnid 4056 . . . . . 6  |-  x  e. 
{ x }
76a1i 11 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  x  e.  { x } )
8 llyi 19769 . . . . 5  |-  ( ( ~P X  e. Locally  A  /\  { x }  e.  ~P X  /\  x  e.  {
x } )  ->  E. y  e.  ~P  X ( y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y )  e.  A ) )
91, 5, 7, 8syl3anc 1228 . . . 4  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  E. y  e.  ~P  X ( y 
C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y )  e.  A ) )
10 simpr1 1002 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  y  C_  { x } )
11 simpr2 1003 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  x  e.  y )
1211snssd 4172 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  { x }  C_  y )
1310, 12eqssd 3521 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  y  =  { x } )
1413oveq2d 6300 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  =  ( ~P Xt  { x } ) )
15 simplll 757 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  X  e.  V )
16 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  x  e.  X )
1716snssd 4172 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  { x }  C_  X )
18 restdis 19473 . . . . . . . . 9  |-  ( ( X  e.  V  /\  { x }  C_  X
)  ->  ( ~P Xt  { x } )  =  ~P { x } )
1915, 17, 18syl2anc 661 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  { x } )  =  ~P { x } )
2014, 19eqtrd 2508 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  =  ~P { x } )
21 simpr3 1004 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  e.  A
)
2220, 21eqeltrrd 2556 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ~P { x }  e.  A )
2322ex 434 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ( (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A )  ->  ~P { x }  e.  A )
)
2423rexlimdvw 2958 . . . 4  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ( E. y  e.  ~P  X
( y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A )  ->  ~P { x }  e.  A )
)
259, 24mpd 15 . . 3  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ~P { x }  e.  A )
2625ralrimiva 2878 . 2  |-  ( ( X  e.  V  /\  ~P X  e. Locally  A )  ->  A. x  e.  X  ~P { x }  e.  A )
27 distop 19291 . . . 4  |-  ( X  e.  V  ->  ~P X  e.  Top )
2827adantr 465 . . 3  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  ~P X  e.  Top )
29 elpwi 4019 . . . . . . . . 9  |-  ( y  e.  ~P X  -> 
y  C_  X )
3029adantl 466 . . . . . . . 8  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  y  C_  X )
31 ssralv 3564 . . . . . . . 8  |-  ( y 
C_  X  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  ~P { x }  e.  A ) )
3230, 31syl 16 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  ~P { x }  e.  A ) )
33 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  x  e.  y )
3433snssd 4172 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  C_  y )
3530adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
y  C_  X )
3634, 35sstrd 3514 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  C_  X )
37 snex 4688 . . . . . . . . . . . . 13  |-  { x }  e.  _V
3837elpw 4016 . . . . . . . . . . . 12  |-  ( { x }  e.  ~P X 
<->  { x }  C_  X )
3936, 38sylibr 212 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ~P X )
4037elpw 4016 . . . . . . . . . . . 12  |-  ( { x }  e.  ~P y 
<->  { x }  C_  y )
4134, 40sylibr 212 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ~P y )
4239, 41elind 3688 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ( ~P X  i^i  ~P y ) )
43 snidg 4053 . . . . . . . . . . 11  |-  ( x  e.  y  ->  x  e.  { x } )
4443ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  x  e.  { x } )
45 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  X  e.  V )
4645, 36, 18syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
( ~P Xt  { x } )  =  ~P { x } )
47 simprr 756 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  ~P { x }  e.  A )
4846, 47eqeltrd 2555 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
( ~P Xt  { x } )  e.  A
)
49 eleq2 2540 . . . . . . . . . . . 12  |-  ( u  =  { x }  ->  ( x  e.  u  <->  x  e.  { x }
) )
50 oveq2 6292 . . . . . . . . . . . . 13  |-  ( u  =  { x }  ->  ( ~P Xt  u )  =  ( ~P Xt  { x } ) )
5150eleq1d 2536 . . . . . . . . . . . 12  |-  ( u  =  { x }  ->  ( ( ~P Xt  u
)  e.  A  <->  ( ~P Xt  { x } )  e.  A ) )
5249, 51anbi12d 710 . . . . . . . . . . 11  |-  ( u  =  { x }  ->  ( ( x  e.  u  /\  ( ~P Xt  u )  e.  A
)  <->  ( x  e. 
{ x }  /\  ( ~P Xt  { x } )  e.  A ) ) )
5352rspcev 3214 . . . . . . . . . 10  |-  ( ( { x }  e.  ( ~P X  i^i  ~P y )  /\  (
x  e.  { x }  /\  ( ~P Xt  { x } )  e.  A
) )  ->  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5442, 44, 48, 53syl12anc 1226 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5554expr 615 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  x  e.  y )  ->  ( ~P { x }  e.  A  ->  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5655ralimdva 2872 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  y  ~P { x }  e.  A  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5732, 56syld 44 . . . . . 6  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5857imp 429 . . . . 5  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  A. x  e.  X  ~P { x }  e.  A )  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5958an32s 802 . . . 4  |-  ( ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  /\  y  e.  ~P X )  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
6059ralrimiva 2878 . . 3  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  A. y  e.  ~P  X A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
61 islly 19763 . . 3  |-  ( ~P X  e. Locally  A  <->  ( ~P X  e.  Top  /\  A. y  e.  ~P  X A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
6228, 60, 61sylanbrc 664 . 2  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  ~P X  e. Locally  A )
6326, 62impbida 830 1  |-  ( X  e.  V  ->  ( ~P X  e. Locally  A  <->  A. x  e.  X  ~P { x }  e.  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   {csn 4027  (class class class)co 6284   ↾t crest 14676   Topctop 19189  Locally clly 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-fi 7871  df-rest 14678  df-topgen 14699  df-top 19194  df-bases 19196  df-topon 19197  df-lly 19761
This theorem is referenced by:  disllycmp  19793  dis1stc  19794
  Copyright terms: Public domain W3C validator