MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dislly Structured version   Unicode version

Theorem dislly 19976
Description: The discrete space  ~P X is locally  A if and only if every singleton space has property 
A. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
dislly  |-  ( X  e.  V  ->  ( ~P X  e. Locally  A  <->  A. x  e.  X  ~P { x }  e.  A )
)
Distinct variable groups:    x, A    x, V    x, X

Proof of Theorem dislly
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 755 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ~P X  e. Locally  A )
2 simpr 461 . . . . . 6  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  x  e.  X )
3 vex 3098 . . . . . . 7  |-  x  e. 
_V
43snelpw 4683 . . . . . 6  |-  ( x  e.  X  <->  { x }  e.  ~P X
)
52, 4sylib 196 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  { x }  e.  ~P X
)
6 ssnid 4043 . . . . . 6  |-  x  e. 
{ x }
76a1i 11 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  x  e.  { x } )
8 llyi 19953 . . . . 5  |-  ( ( ~P X  e. Locally  A  /\  { x }  e.  ~P X  /\  x  e.  {
x } )  ->  E. y  e.  ~P  X ( y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y )  e.  A ) )
91, 5, 7, 8syl3anc 1229 . . . 4  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  E. y  e.  ~P  X ( y 
C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y )  e.  A ) )
10 simpr1 1003 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  y  C_  { x } )
11 simpr2 1004 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  x  e.  y )
1211snssd 4160 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  { x }  C_  y )
1310, 12eqssd 3506 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  y  =  { x } )
1413oveq2d 6297 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  =  ( ~P Xt  { x } ) )
15 simplll 759 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  X  e.  V )
16 simplr 755 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  x  e.  X )
1716snssd 4160 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  { x }  C_  X )
18 restdis 19657 . . . . . . . . 9  |-  ( ( X  e.  V  /\  { x }  C_  X
)  ->  ( ~P Xt  { x } )  =  ~P { x } )
1915, 17, 18syl2anc 661 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  { x } )  =  ~P { x } )
2014, 19eqtrd 2484 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  =  ~P { x } )
21 simpr3 1005 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ( ~P Xt  y )  e.  A
)
2220, 21eqeltrrd 2532 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X )  /\  (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A ) )  ->  ~P { x }  e.  A )
2322ex 434 . . . . 5  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ( (
y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A )  ->  ~P { x }  e.  A )
)
2423rexlimdvw 2938 . . . 4  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ( E. y  e.  ~P  X
( y  C_  { x }  /\  x  e.  y  /\  ( ~P Xt  y
)  e.  A )  ->  ~P { x }  e.  A )
)
259, 24mpd 15 . . 3  |-  ( ( ( X  e.  V  /\  ~P X  e. Locally  A )  /\  x  e.  X
)  ->  ~P { x }  e.  A )
2625ralrimiva 2857 . 2  |-  ( ( X  e.  V  /\  ~P X  e. Locally  A )  ->  A. x  e.  X  ~P { x }  e.  A )
27 distop 19475 . . . 4  |-  ( X  e.  V  ->  ~P X  e.  Top )
2827adantr 465 . . 3  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  ~P X  e.  Top )
29 elpwi 4006 . . . . . . . . 9  |-  ( y  e.  ~P X  -> 
y  C_  X )
3029adantl 466 . . . . . . . 8  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  y  C_  X )
31 ssralv 3549 . . . . . . . 8  |-  ( y 
C_  X  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  ~P { x }  e.  A ) )
3230, 31syl 16 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  ~P { x }  e.  A ) )
33 simprl 756 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  x  e.  y )
3433snssd 4160 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  C_  y )
3530adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
y  C_  X )
3634, 35sstrd 3499 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  C_  X )
37 snex 4678 . . . . . . . . . . . . 13  |-  { x }  e.  _V
3837elpw 4003 . . . . . . . . . . . 12  |-  ( { x }  e.  ~P X 
<->  { x }  C_  X )
3936, 38sylibr 212 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ~P X )
4037elpw 4003 . . . . . . . . . . . 12  |-  ( { x }  e.  ~P y 
<->  { x }  C_  y )
4134, 40sylibr 212 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ~P y )
4239, 41elind 3673 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  { x }  e.  ( ~P X  i^i  ~P y ) )
43 snidg 4040 . . . . . . . . . . 11  |-  ( x  e.  y  ->  x  e.  { x } )
4443ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  x  e.  { x } )
45 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  X  e.  V )
4645, 36, 18syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
( ~P Xt  { x } )  =  ~P { x } )
47 simprr 757 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  ~P { x }  e.  A )
4846, 47eqeltrd 2531 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  -> 
( ~P Xt  { x } )  e.  A
)
49 eleq2 2516 . . . . . . . . . . . 12  |-  ( u  =  { x }  ->  ( x  e.  u  <->  x  e.  { x }
) )
50 oveq2 6289 . . . . . . . . . . . . 13  |-  ( u  =  { x }  ->  ( ~P Xt  u )  =  ( ~P Xt  { x } ) )
5150eleq1d 2512 . . . . . . . . . . . 12  |-  ( u  =  { x }  ->  ( ( ~P Xt  u
)  e.  A  <->  ( ~P Xt  { x } )  e.  A ) )
5249, 51anbi12d 710 . . . . . . . . . . 11  |-  ( u  =  { x }  ->  ( ( x  e.  u  /\  ( ~P Xt  u )  e.  A
)  <->  ( x  e. 
{ x }  /\  ( ~P Xt  { x } )  e.  A ) ) )
5352rspcev 3196 . . . . . . . . . 10  |-  ( ( { x }  e.  ( ~P X  i^i  ~P y )  /\  (
x  e.  { x }  /\  ( ~P Xt  { x } )  e.  A
) )  ->  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5442, 44, 48, 53syl12anc 1227 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  (
x  e.  y  /\  ~P { x }  e.  A ) )  ->  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5554expr 615 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  x  e.  y )  ->  ( ~P { x }  e.  A  ->  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5655ralimdva 2851 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  y  ~P { x }  e.  A  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5732, 56syld 44 . . . . . 6  |-  ( ( X  e.  V  /\  y  e.  ~P X
)  ->  ( A. x  e.  X  ~P { x }  e.  A  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
5857imp 429 . . . . 5  |-  ( ( ( X  e.  V  /\  y  e.  ~P X )  /\  A. x  e.  X  ~P { x }  e.  A )  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
5958an32s 804 . . . 4  |-  ( ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  /\  y  e.  ~P X )  ->  A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
6059ralrimiva 2857 . . 3  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  A. y  e.  ~P  X A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y ) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) )
61 islly 19947 . . 3  |-  ( ~P X  e. Locally  A  <->  ( ~P X  e.  Top  /\  A. y  e.  ~P  X A. x  e.  y  E. u  e.  ( ~P X  i^i  ~P y
) ( x  e.  u  /\  ( ~P Xt  u )  e.  A
) ) )
6228, 60, 61sylanbrc 664 . 2  |-  ( ( X  e.  V  /\  A. x  e.  X  ~P { x }  e.  A )  ->  ~P X  e. Locally  A )
6326, 62impbida 832 1  |-  ( X  e.  V  ->  ( ~P X  e. Locally  A  <->  A. x  e.  X  ~P { x }  e.  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794    i^i cin 3460    C_ wss 3461   ~Pcpw 3997   {csn 4014  (class class class)co 6281   ↾t crest 14800   Topctop 19372  Locally clly 19943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873  df-rest 14802  df-topgen 14823  df-top 19377  df-bases 19379  df-topon 19380  df-lly 19945
This theorem is referenced by:  disllycmp  19977  dis1stc  19978
  Copyright terms: Public domain W3C validator