MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjss1 Structured version   Unicode version

Theorem disjss1 4267
Description: A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem disjss1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3349 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21anim1d 564 . . . . 5  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  y  e.  C
)  ->  ( x  e.  B  /\  y  e.  C ) ) )
32alrimiv 1685 . . . 4  |-  ( A 
C_  B  ->  A. x
( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
) )
4 moim 2319 . . . 4  |-  ( A. x ( ( x  e.  A  /\  y  e.  C )  ->  (
x  e.  B  /\  y  e.  C )
)  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
53, 4syl 16 . . 3  |-  ( A 
C_  B  ->  ( E* x ( x  e.  B  /\  y  e.  C )  ->  E* x ( x  e.  A  /\  y  e.  C ) ) )
65alimdv 1675 . 2  |-  ( A 
C_  B  ->  ( A. y E* x ( x  e.  B  /\  y  e.  C )  ->  A. y E* x
( x  e.  A  /\  y  e.  C
) ) )
7 dfdisj2 4263 . 2  |-  (Disj  x  e.  B  C  <->  A. y E* x ( x  e.  B  /\  y  e.  C ) )
8 dfdisj2 4263 . 2  |-  (Disj  x  e.  A  C  <->  A. y E* x ( x  e.  A  /\  y  e.  C ) )
96, 7, 83imtr4g 270 1  |-  ( A 
C_  B  ->  (Disj  x  e.  B  C  -> Disj  x  e.  A  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1367    e. wcel 1756   E*wmo 2254    C_ wss 3327  Disj wdisj 4261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-rmo 2722  df-in 3334  df-ss 3341  df-disj 4262
This theorem is referenced by:  disjeq1  4268  disjx0  4286  disjxiun  4288  disjss3  4290  volfiniun  21027  uniioovol  21058  uniioombllem4  21065  sibfof  26725
  Copyright terms: Public domain W3C validator