Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjmoOLD Structured version   Unicode version

Theorem disjmoOLD 4432
 Description: Two ways to say that a collection for is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
disjmo.1
Assertion
Ref Expression
disjmoOLD
Distinct variable groups:   ,,,   ,,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem disjmoOLD
StepHypRef Expression
1 dfdisj2 4419 . 2 Disj
2 disjmo.1 . . 3
32disjor 4431 . 2 Disj
41, 3bitr3i 251 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wo 368   wa 369  wal 1377   wceq 1379   wcel 1767  wmo 2276  wral 2814   cin 3475  c0 3785  Disj wdisj 4417 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rmo 2822  df-v 3115  df-dif 3479  df-in 3483  df-nul 3786  df-disj 4418 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator