MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiun Structured version   Unicode version

Theorem disjiun 4447
Description: A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjiun  |-  ( (Disj  x  e.  A  B  /\  ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  -> 
( U_ x  e.  C  B  i^i  U_ x  e.  D  B )  =  (/) )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hint:    B( x)

Proof of Theorem disjiun
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-disj 4428 . . . 4  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
2 elin 3683 . . . . . . . . . 10  |-  ( y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
)  <->  ( y  e. 
U_ x  e.  C  B  /\  y  e.  U_ x  e.  D  B
) )
3 eliun 4337 . . . . . . . . . . 11  |-  ( y  e.  U_ x  e.  C  B  <->  E. x  e.  C  y  e.  B )
4 eliun 4337 . . . . . . . . . . 11  |-  ( y  e.  U_ x  e.  D  B  <->  E. x  e.  D  y  e.  B )
53, 4anbi12i 697 . . . . . . . . . 10  |-  ( ( y  e.  U_ x  e.  C  B  /\  y  e.  U_ x  e.  D  B )  <->  ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B ) )
62, 5bitri 249 . . . . . . . . 9  |-  ( y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
)  <->  ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B
) )
7 nfv 1708 . . . . . . . . . . . 12  |-  F/ z  y  e.  B
87rmo2 3423 . . . . . . . . . . 11  |-  ( E* x  e.  A  y  e.  B  <->  E. z A. x  e.  A  ( y  e.  B  ->  x  =  z ) )
9 an4 824 . . . . . . . . . . . . 13  |-  ( ( ( C  C_  A  /\  D  C_  A )  /\  ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B
) )  <->  ( ( C  C_  A  /\  E. x  e.  C  y  e.  B )  /\  ( D  C_  A  /\  E. x  e.  D  y  e.  B ) ) )
10 ssralv 3560 . . . . . . . . . . . . . . . . . . 19  |-  ( C 
C_  A  ->  ( A. x  e.  A  ( y  e.  B  ->  x  =  z )  ->  A. x  e.  C  ( y  e.  B  ->  x  =  z ) ) )
1110impcom 430 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. x  e.  A  ( y  e.  B  ->  x  =  z )  /\  C  C_  A
)  ->  A. x  e.  C  ( y  e.  B  ->  x  =  z ) )
12 r19.29 2992 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. x  e.  C  ( y  e.  B  ->  x  =  z )  /\  E. x  e.  C  y  e.  B
)  ->  E. x  e.  C  ( (
y  e.  B  ->  x  =  z )  /\  y  e.  B
) )
13 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  e.  B  ->  x  =  z )  ->  ( y  e.  B  ->  x  =  z ) )
1413imp 429 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( y  e.  B  ->  x  =  z )  /\  y  e.  B
)  ->  x  =  z )
1514eleq1d 2526 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  B  ->  x  =  z )  /\  y  e.  B
)  ->  ( x  e.  C  <->  z  e.  C
) )
1615biimpcd 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  C  ->  (
( ( y  e.  B  ->  x  =  z )  /\  y  e.  B )  ->  z  e.  C ) )
1716rexlimiv 2943 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. x  e.  C  ( ( y  e.  B  ->  x  =  z )  /\  y  e.  B
)  ->  z  e.  C )
1812, 17syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. x  e.  C  ( y  e.  B  ->  x  =  z )  /\  E. x  e.  C  y  e.  B
)  ->  z  e.  C )
1918ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  C  (
y  e.  B  ->  x  =  z )  ->  ( E. x  e.  C  y  e.  B  ->  z  e.  C ) )
2011, 19syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  A  ( y  e.  B  ->  x  =  z )  /\  C  C_  A
)  ->  ( E. x  e.  C  y  e.  B  ->  z  e.  C ) )
2120expimpd 603 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  (
y  e.  B  ->  x  =  z )  ->  ( ( C  C_  A  /\  E. x  e.  C  y  e.  B
)  ->  z  e.  C ) )
22 ssralv 3560 . . . . . . . . . . . . . . . . . . 19  |-  ( D 
C_  A  ->  ( A. x  e.  A  ( y  e.  B  ->  x  =  z )  ->  A. x  e.  D  ( y  e.  B  ->  x  =  z ) ) )
2322impcom 430 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. x  e.  A  ( y  e.  B  ->  x  =  z )  /\  D  C_  A
)  ->  A. x  e.  D  ( y  e.  B  ->  x  =  z ) )
24 r19.29 2992 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. x  e.  D  ( y  e.  B  ->  x  =  z )  /\  E. x  e.  D  y  e.  B
)  ->  E. x  e.  D  ( (
y  e.  B  ->  x  =  z )  /\  y  e.  B
) )
2514eleq1d 2526 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  e.  B  ->  x  =  z )  /\  y  e.  B
)  ->  ( x  e.  D  <->  z  e.  D
) )
2625biimpcd 224 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  D  ->  (
( ( y  e.  B  ->  x  =  z )  /\  y  e.  B )  ->  z  e.  D ) )
2726rexlimiv 2943 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. x  e.  D  ( ( y  e.  B  ->  x  =  z )  /\  y  e.  B
)  ->  z  e.  D )
2824, 27syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. x  e.  D  ( y  e.  B  ->  x  =  z )  /\  E. x  e.  D  y  e.  B
)  ->  z  e.  D )
2928ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  D  (
y  e.  B  ->  x  =  z )  ->  ( E. x  e.  D  y  e.  B  ->  z  e.  D ) )
3023, 29syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( A. x  e.  A  ( y  e.  B  ->  x  =  z )  /\  D  C_  A
)  ->  ( E. x  e.  D  y  e.  B  ->  z  e.  D ) )
3130expimpd 603 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  (
y  e.  B  ->  x  =  z )  ->  ( ( D  C_  A  /\  E. x  e.  D  y  e.  B
)  ->  z  e.  D ) )
3221, 31anim12d 563 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  A  (
y  e.  B  ->  x  =  z )  ->  ( ( ( C 
C_  A  /\  E. x  e.  C  y  e.  B )  /\  ( D  C_  A  /\  E. x  e.  D  y  e.  B ) )  -> 
( z  e.  C  /\  z  e.  D
) ) )
33 inelcm 3884 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  C  /\  z  e.  D )  ->  ( C  i^i  D
)  =/=  (/) )
3432, 33syl6 33 . . . . . . . . . . . . . 14  |-  ( A. x  e.  A  (
y  e.  B  ->  x  =  z )  ->  ( ( ( C 
C_  A  /\  E. x  e.  C  y  e.  B )  /\  ( D  C_  A  /\  E. x  e.  D  y  e.  B ) )  -> 
( C  i^i  D
)  =/=  (/) ) )
3534exlimiv 1723 . . . . . . . . . . . . 13  |-  ( E. z A. x  e.  A  ( y  e.  B  ->  x  =  z )  ->  (
( ( C  C_  A  /\  E. x  e.  C  y  e.  B
)  /\  ( D  C_  A  /\  E. x  e.  D  y  e.  B ) )  -> 
( C  i^i  D
)  =/=  (/) ) )
369, 35syl5bi 217 . . . . . . . . . . . 12  |-  ( E. z A. x  e.  A  ( y  e.  B  ->  x  =  z )  ->  (
( ( C  C_  A  /\  D  C_  A
)  /\  ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B ) )  -> 
( C  i^i  D
)  =/=  (/) ) )
3736expd 436 . . . . . . . . . . 11  |-  ( E. z A. x  e.  A  ( y  e.  B  ->  x  =  z )  ->  (
( C  C_  A  /\  D  C_  A )  ->  ( ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B )  ->  ( C  i^i  D )  =/=  (/) ) ) )
388, 37sylbi 195 . . . . . . . . . 10  |-  ( E* x  e.  A  y  e.  B  ->  (
( C  C_  A  /\  D  C_  A )  ->  ( ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B )  ->  ( C  i^i  D )  =/=  (/) ) ) )
3938impcom 430 . . . . . . . . 9  |-  ( ( ( C  C_  A  /\  D  C_  A )  /\  E* x  e.  A  y  e.  B
)  ->  ( ( E. x  e.  C  y  e.  B  /\  E. x  e.  D  y  e.  B )  -> 
( C  i^i  D
)  =/=  (/) ) )
406, 39syl5bi 217 . . . . . . . 8  |-  ( ( ( C  C_  A  /\  D  C_  A )  /\  E* x  e.  A  y  e.  B
)  ->  ( y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
)  ->  ( C  i^i  D )  =/=  (/) ) )
4140necon2bd 2672 . . . . . . 7  |-  ( ( ( C  C_  A  /\  D  C_  A )  /\  E* x  e.  A  y  e.  B
)  ->  ( ( C  i^i  D )  =  (/)  ->  -.  y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B ) ) )
4241impancom 440 . . . . . 6  |-  ( ( ( C  C_  A  /\  D  C_  A )  /\  ( C  i^i  D )  =  (/) )  -> 
( E* x  e.  A  y  e.  B  ->  -.  y  e.  (
U_ x  e.  C  B  i^i  U_ x  e.  D  B ) ) )
43423impa 1191 . . . . 5  |-  ( ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) )  ->  ( E* x  e.  A  y  e.  B  ->  -.  y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B ) ) )
4443alimdv 1710 . . . 4  |-  ( ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) )  ->  ( A. y E* x  e.  A  y  e.  B  ->  A. y  -.  y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
) ) )
451, 44syl5bi 217 . . 3  |-  ( ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) )  ->  (Disj  x  e.  A  B  ->  A. y  -.  y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
) ) )
4645impcom 430 . 2  |-  ( (Disj  x  e.  A  B  /\  ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  ->  A. y  -.  y  e.  ( U_ x  e.  C  B  i^i  U_ x  e.  D  B
) )
47 eq0 3809 . 2  |-  ( (
U_ x  e.  C  B  i^i  U_ x  e.  D  B )  =  (/)  <->  A. y  -.  y  e.  (
U_ x  e.  C  B  i^i  U_ x  e.  D  B ) )
4846, 47sylibr 212 1  |-  ( (Disj  x  e.  A  B  /\  ( C  C_  A  /\  D  C_  A  /\  ( C  i^i  D )  =  (/) ) )  -> 
( U_ x  e.  C  B  i^i  U_ x  e.  D  B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   E*wrmo 2810    i^i cin 3470    C_ wss 3471   (/)c0 3793   U_ciun 4332  Disj wdisj 4427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rmo 2815  df-v 3111  df-dif 3474  df-in 3478  df-ss 3485  df-nul 3794  df-iun 4334  df-disj 4428
This theorem is referenced by:  disjxiun  4453  fsumiun  13647  uniioombllem4  22121
  Copyright terms: Public domain W3C validator