Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjif2 Structured version   Unicode version

Theorem disjif2 26103
Description: Property of a disjoint collection: if  B ( x ) and  B ( Y )  =  D have a common element  Z, then  x  =  Y. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
disjif2.1  |-  F/_ x A
disjif2.2  |-  F/_ x C
disjif2.3  |-  ( x  =  Y  ->  B  =  C )
Assertion
Ref Expression
disjif2  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
)  /\  ( Z  e.  B  /\  Z  e.  C ) )  ->  x  =  Y )
Distinct variable group:    x, Y
Allowed substitution hints:    A( x)    B( x)    C( x)    Z( x)

Proof of Theorem disjif2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inelcm 3844 . 2  |-  ( ( Z  e.  B  /\  Z  e.  C )  ->  ( B  i^i  C
)  =/=  (/) )
2 disjif2.1 . . . . . . . 8  |-  F/_ x A
32disjorsf 26102 . . . . . . 7  |-  (Disj  x  e.  A  B  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
4 equequ1 1738 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  =  z  <->  x  =  z ) )
5 csbeq1 3401 . . . . . . . . . . . 12  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
6 csbid 3406 . . . . . . . . . . . 12  |-  [_ x  /  x ]_ B  =  B
75, 6syl6eq 2511 . . . . . . . . . . 11  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
87ineq1d 3662 . . . . . . . . . 10  |-  ( y  =  x  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( B  i^i  [_ z  /  x ]_ B ) )
98eqeq1d 2456 . . . . . . . . 9  |-  ( y  =  x  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
104, 9orbi12d 709 . . . . . . . 8  |-  ( y  =  x  ->  (
( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( x  =  z  \/  ( B  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
11 eqeq2 2469 . . . . . . . . 9  |-  ( z  =  Y  ->  (
x  =  z  <->  x  =  Y ) )
12 nfcv 2616 . . . . . . . . . . . 12  |-  F/_ x Y
13 disjif2.2 . . . . . . . . . . . 12  |-  F/_ x C
14 disjif2.3 . . . . . . . . . . . 12  |-  ( x  =  Y  ->  B  =  C )
1512, 13, 14csbhypf 3417 . . . . . . . . . . 11  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  C )
1615ineq2d 3663 . . . . . . . . . 10  |-  ( z  =  Y  ->  ( B  i^i  [_ z  /  x ]_ B )  =  ( B  i^i  C ) )
1716eqeq1d 2456 . . . . . . . . 9  |-  ( z  =  Y  ->  (
( B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( B  i^i  C )  =  (/) ) )
1811, 17orbi12d 709 . . . . . . . 8  |-  ( z  =  Y  ->  (
( x  =  z  \/  ( B  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( x  =  Y  \/  ( B  i^i  C )  =  (/) ) ) )
1910, 18rspc2v 3186 . . . . . . 7  |-  ( ( x  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( x  =  Y  \/  ( B  i^i  C )  =  (/) ) ) )
203, 19syl5bi 217 . . . . . 6  |-  ( ( x  e.  A  /\  Y  e.  A )  ->  (Disj  x  e.  A  B  ->  ( x  =  Y  \/  ( B  i^i  C )  =  (/) ) ) )
2120impcom 430 . . . . 5  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
) )  ->  (
x  =  Y  \/  ( B  i^i  C )  =  (/) ) )
2221ord 377 . . . 4  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
) )  ->  ( -.  x  =  Y  ->  ( B  i^i  C
)  =  (/) ) )
2322necon1ad 2668 . . 3  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
) )  ->  (
( B  i^i  C
)  =/=  (/)  ->  x  =  Y ) )
24233impia 1185 . 2  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
)  /\  ( B  i^i  C )  =/=  (/) )  ->  x  =  Y )
251, 24syl3an3 1254 1  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
)  /\  ( Z  e.  B  /\  Z  e.  C ) )  ->  x  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   F/_wnfc 2602    =/= wne 2648   A.wral 2799   [_csb 3398    i^i cin 3438   (/)c0 3748  Disj wdisj 4373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rmo 2807  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-in 3446  df-nul 3749  df-disj 4374
This theorem is referenced by:  disjabrexf  26105
  Copyright terms: Public domain W3C validator