MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjen Structured version   Unicode version

Theorem disjen 7464
Description: A stronger form of pwuninel 6790. We can use pwuninel 6790, 2pwuninel 7462 to create one or two sets disjoint from a given set  A, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set  B we can construct a set  x that is equinumerous to it and disjoint from  A. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjen  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  i^i  ( B  X.  { ~P U.
ran  A } ) )  =  (/)  /\  ( B  X.  { ~P U. ran  A } )  ~~  B ) )

Proof of Theorem disjen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 6612 . . . . . . . 8  |-  ( x  e.  ( B  X.  { ~P U. ran  A } )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
21ad2antll 723 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
3 simprl 750 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  x  e.  A )
42, 3eqeltrrd 2516 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  A
)
5 fvex 5698 . . . . . . 7  |-  ( 1st `  x )  e.  _V
6 fvex 5698 . . . . . . 7  |-  ( 2nd `  x )  e.  _V
75, 6opelrn 5067 . . . . . 6  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  A  ->  ( 2nd `  x
)  e.  ran  A
)
84, 7syl 16 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( 2nd `  x
)  e.  ran  A
)
9 pwuninel 6790 . . . . . 6  |-  -.  ~P U.
ran  A  e.  ran  A
10 xp2nd 6606 . . . . . . . . 9  |-  ( x  e.  ( B  X.  { ~P U. ran  A } )  ->  ( 2nd `  x )  e. 
{ ~P U. ran  A } )
1110ad2antll 723 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( 2nd `  x
)  e.  { ~P U.
ran  A } )
12 elsni 3899 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  { ~P U. ran  A }  ->  ( 2nd `  x )  =  ~P U. ran  A
)
1311, 12syl 16 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( 2nd `  x
)  =  ~P U. ran  A )
1413eleq1d 2507 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( ( 2nd `  x
)  e.  ran  A  <->  ~P
U. ran  A  e.  ran  A ) )
159, 14mtbiri 303 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  -.  ( 2nd `  x
)  e.  ran  A
)
168, 15pm2.65da 573 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )
17 elin 3536 . . . 4  |-  ( x  e.  ( A  i^i  ( B  X.  { ~P U.
ran  A } ) )  <->  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )
1816, 17sylnibr 305 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  x  e.  ( A  i^i  ( B  X.  { ~P U. ran  A } ) ) )
1918eq0rdv 3669 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  i^i  ( B  X.  { ~P U. ran  A } ) )  =  (/) )
20 simpr 458 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
21 rnexg 6509 . . . . 5  |-  ( A  e.  V  ->  ran  A  e.  _V )
2221adantr 462 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  A  e.  _V )
23 uniexg 6376 . . . 4  |-  ( ran 
A  e.  _V  ->  U.
ran  A  e.  _V )
24 pwexg 4473 . . . 4  |-  ( U. ran  A  e.  _V  ->  ~P
U. ran  A  e.  _V )
2522, 23, 243syl 20 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P U. ran  A  e.  _V )
26 xpsneng 7392 . . 3  |-  ( ( B  e.  W  /\  ~P U. ran  A  e. 
_V )  ->  ( B  X.  { ~P U. ran  A } )  ~~  B )
2720, 25, 26syl2anc 656 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { ~P U. ran  A }
)  ~~  B )
2819, 27jca 529 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  i^i  ( B  X.  { ~P U.
ran  A } ) )  =  (/)  /\  ( B  X.  { ~P U. ran  A } )  ~~  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   _Vcvv 2970    i^i cin 3324   (/)c0 3634   ~Pcpw 3857   {csn 3874   <.cop 3880   U.cuni 4088   class class class wbr 4289    X. cxp 4834   ran crn 4837   ` cfv 5415   1stc1st 6574   2ndc2nd 6575    ~~ cen 7303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-1st 6576  df-2nd 6577  df-en 7307
This theorem is referenced by:  disjenex  7465  domss2  7466
  Copyright terms: Public domain W3C validator