MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjen Structured version   Unicode version

Theorem disjen 7674
Description: A stronger form of pwuninel 7004. We can use pwuninel 7004, 2pwuninel 7672 to create one or two sets disjoint from a given set  A, but here we show that in fact such constructions exist for arbitrarily large disjoint extensions, which is to say that for any set  B we can construct a set  x that is equinumerous to it and disjoint from  A. (Contributed by Mario Carneiro, 7-Feb-2015.)
Assertion
Ref Expression
disjen  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  i^i  ( B  X.  { ~P U.
ran  A } ) )  =  (/)  /\  ( B  X.  { ~P U. ran  A } )  ~~  B ) )

Proof of Theorem disjen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1st2nd2 6821 . . . . . . . 8  |-  ( x  e.  ( B  X.  { ~P U. ran  A } )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
21ad2antll 728 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x )
>. )
3 simprl 755 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  x  e.  A )
42, 3eqeltrrd 2556 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  <. ( 1st `  x
) ,  ( 2nd `  x ) >.  e.  A
)
5 fvex 5876 . . . . . . 7  |-  ( 1st `  x )  e.  _V
6 fvex 5876 . . . . . . 7  |-  ( 2nd `  x )  e.  _V
75, 6opelrn 5234 . . . . . 6  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  A  ->  ( 2nd `  x
)  e.  ran  A
)
84, 7syl 16 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( 2nd `  x
)  e.  ran  A
)
9 pwuninel 7004 . . . . . 6  |-  -.  ~P U.
ran  A  e.  ran  A
10 xp2nd 6815 . . . . . . . . 9  |-  ( x  e.  ( B  X.  { ~P U. ran  A } )  ->  ( 2nd `  x )  e. 
{ ~P U. ran  A } )
1110ad2antll 728 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( 2nd `  x
)  e.  { ~P U.
ran  A } )
12 elsni 4052 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  { ~P U. ran  A }  ->  ( 2nd `  x )  =  ~P U. ran  A
)
1311, 12syl 16 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( 2nd `  x
)  =  ~P U. ran  A )
1413eleq1d 2536 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  -> 
( ( 2nd `  x
)  e.  ran  A  <->  ~P
U. ran  A  e.  ran  A ) )
159, 14mtbiri 303 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )  ->  -.  ( 2nd `  x
)  e.  ran  A
)
168, 15pm2.65da 576 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )
17 elin 3687 . . . 4  |-  ( x  e.  ( A  i^i  ( B  X.  { ~P U.
ran  A } ) )  <->  ( x  e.  A  /\  x  e.  ( B  X.  { ~P U. ran  A }
) ) )
1816, 17sylnibr 305 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  -.  x  e.  ( A  i^i  ( B  X.  { ~P U. ran  A } ) ) )
1918eq0rdv 3820 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  i^i  ( B  X.  { ~P U. ran  A } ) )  =  (/) )
20 simpr 461 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  B  e.  W )
21 rnexg 6716 . . . . 5  |-  ( A  e.  V  ->  ran  A  e.  _V )
2221adantr 465 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ran  A  e.  _V )
23 uniexg 6581 . . . 4  |-  ( ran 
A  e.  _V  ->  U.
ran  A  e.  _V )
24 pwexg 4631 . . . 4  |-  ( U. ran  A  e.  _V  ->  ~P
U. ran  A  e.  _V )
2522, 23, 243syl 20 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P U. ran  A  e.  _V )
26 xpsneng 7602 . . 3  |-  ( ( B  e.  W  /\  ~P U. ran  A  e. 
_V )  ->  ( B  X.  { ~P U. ran  A } )  ~~  B )
2720, 25, 26syl2anc 661 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { ~P U. ran  A }
)  ~~  B )
2819, 27jca 532 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  i^i  ( B  X.  { ~P U.
ran  A } ) )  =  (/)  /\  ( B  X.  { ~P U. ran  A } )  ~~  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475   (/)c0 3785   ~Pcpw 4010   {csn 4027   <.cop 4033   U.cuni 4245   class class class wbr 4447    X. cxp 4997   ran crn 5000   ` cfv 5588   1stc1st 6782   2ndc2nd 6783    ~~ cen 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-1st 6784  df-2nd 6785  df-en 7517
This theorem is referenced by:  disjenex  7675  domss2  7676
  Copyright terms: Public domain W3C validator