MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Unicode version

Theorem discr1 12270
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1  |-  ( ph  ->  A  e.  RR )
discr.2  |-  ( ph  ->  B  e.  RR )
discr.3  |-  ( ph  ->  C  e.  RR )
discr.4  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
discr1.5  |-  X  =  if ( 1  <_ 
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )
Assertion
Ref Expression
discr1  |-  ( ph  ->  0  <_  A )
Distinct variable groups:    x, A    x, B    x, C    x, X    ph, x

Proof of Theorem discr1
StepHypRef Expression
1 discr1.5 . . . . 5  |-  X  =  if ( 1  <_ 
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )
2 discr.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
32adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  B  e.  RR )
4 discr.3 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
54adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  C  e.  RR )
6 0re 9596 . . . . . . . . . 10  |-  0  e.  RR
7 ifcl 3981 . . . . . . . . . 10  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  C ,  C , 
0 )  e.  RR )
85, 6, 7sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  if ( 0  <_  C ,  C ,  0 )  e.  RR )
93, 8readdcld 9623 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  e.  RR )
10 peano2re 9752 . . . . . . . 8  |-  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  e.  RR  ->  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  e.  RR )
119, 10syl 16 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  e.  RR )
12 discr.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1312adantr 465 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  RR )
1413renegcld 9986 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR )
1512lt0neg1d 10122 . . . . . . . . 9  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
1615biimpa 484 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  0  <  -u A )
1716gt0ne0d 10117 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  =/=  0 )
1811, 14, 17redivcld 10372 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR )
19 1re 9595 . . . . . 6  |-  1  e.  RR
20 ifcl 3981 . . . . . 6  |-  ( ( ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )  e.  RR )
2118, 19, 20sylancl 662 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 )  e.  RR )
221, 21syl5eqel 2559 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  X  e.  RR )
23 discr.4 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  0  <_ 
( ( ( A  x.  ( x ^
2 ) )  +  ( B  x.  x
) )  +  C
) )
2423ralrimiva 2878 . . . . 5  |-  ( ph  ->  A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
2524adantr 465 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  A. x  e.  RR  0  <_  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C ) )
26 oveq1 6291 . . . . . . . . 9  |-  ( x  =  X  ->  (
x ^ 2 )  =  ( X ^
2 ) )
2726oveq2d 6300 . . . . . . . 8  |-  ( x  =  X  ->  ( A  x.  ( x ^ 2 ) )  =  ( A  x.  ( X ^ 2 ) ) )
28 oveq2 6292 . . . . . . . 8  |-  ( x  =  X  ->  ( B  x.  x )  =  ( B  x.  X ) )
2927, 28oveq12d 6302 . . . . . . 7  |-  ( x  =  X  ->  (
( A  x.  (
x ^ 2 ) )  +  ( B  x.  x ) )  =  ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) ) )
3029oveq1d 6299 . . . . . 6  |-  ( x  =  X  ->  (
( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  =  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) )
3130breq2d 4459 . . . . 5  |-  ( x  =  X  ->  (
0  <_  ( (
( A  x.  (
x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  <->  0  <_  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) ) )
3231rspcv 3210 . . . 4  |-  ( X  e.  RR  ->  ( A. x  e.  RR  0  <_  ( ( ( A  x.  ( x ^ 2 ) )  +  ( B  x.  x ) )  +  C )  ->  0  <_  ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
) ) )
3322, 25, 32sylc 60 . . 3  |-  ( (
ph  /\  A  <  0 )  ->  0  <_  ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
) )
34 resqcl 12203 . . . . . . . . 9  |-  ( X  e.  RR  ->  ( X ^ 2 )  e.  RR )
3522, 34syl 16 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( X ^ 2 )  e.  RR )
3613, 35remulcld 9624 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  ( X ^ 2 ) )  e.  RR )
373, 22remulcld 9624 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( B  x.  X )  e.  RR )
3836, 37readdcld 9623 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  e.  RR )
3938, 5readdcld 9623 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  e.  RR )
4013, 22remulcld 9624 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  X )  e.  RR )
4140, 9readdcld 9623 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  e.  RR )
4241, 22remulcld 9624 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  e.  RR )
436a1i 11 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  0  e.  RR )
448, 22remulcld 9624 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  ( if ( 0  <_  C ,  C ,  0 )  x.  X )  e.  RR )
45 max2 11388 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  C  <_  if (
0  <_  C ,  C ,  0 ) )
466, 5, 45sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  C  <_  if ( 0  <_  C ,  C , 
0 ) )
47 max1 11386 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  C  e.  RR )  ->  0  <_  if (
0  <_  C ,  C ,  0 ) )
486, 5, 47sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  0  <_  if ( 0  <_  C ,  C , 
0 ) )
49 max1 11386 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR )  ->  1  <_  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
5019, 18, 49sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  1  <_  if ( 1  <_ 
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
5150, 1syl6breqr 4487 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  1  <_  X )
528, 22, 48, 51lemulge11d 10483 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  if ( 0  <_  C ,  C ,  0 )  <_  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) )
535, 8, 44, 46, 52letrd 9738 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  C  <_  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) )
545, 44, 38, 53leadd2dd 10167 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <_ 
( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  ( if ( 0  <_  C ,  C , 
0 )  x.  X
) ) )
5540, 3readdcld 9623 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  B )  e.  RR )
5655recnd 9622 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  B )  e.  CC )
578recnd 9622 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  if ( 0  <_  C ,  C ,  0 )  e.  CC )
5822recnd 9622 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  X  e.  CC )
5956, 57, 58adddird 9621 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  X )  +  B )  +  if ( 0  <_  C ,  C ,  0 ) )  x.  X )  =  ( ( ( ( A  x.  X
)  +  B )  x.  X )  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) ) )
6040recnd 9622 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  X )  e.  CC )
613recnd 9622 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  B  e.  CC )
6260, 61, 57addassd 9618 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  B
)  +  if ( 0  <_  C ,  C ,  0 ) )  =  ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) ) )
6362oveq1d 6299 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  X )  +  B )  +  if ( 0  <_  C ,  C ,  0 ) )  x.  X )  =  ( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
) )
6460, 61, 58adddird 9621 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  B
)  x.  X )  =  ( ( ( A  x.  X )  x.  X )  +  ( B  x.  X
) ) )
6513recnd 9622 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  CC )
6665, 58, 58mulassd 9619 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  x.  X )  =  ( A  x.  ( X  x.  X
) ) )
67 sqval 12195 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X ^ 2 )  =  ( X  x.  X
) )
6858, 67syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  ( X ^ 2 )  =  ( X  x.  X
) )
6968oveq2d 6300 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  ( A  x.  ( X ^ 2 ) )  =  ( A  x.  ( X  x.  X
) ) )
7066, 69eqtr4d 2511 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  x.  X )  =  ( A  x.  ( X ^ 2 ) ) )
7170oveq1d 6299 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  x.  X
)  +  ( B  x.  X ) )  =  ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) ) )
7264, 71eqtrd 2508 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  B
)  x.  X )  =  ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) ) )
7372oveq1d 6299 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  X )  +  B )  x.  X
)  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) )  =  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) ) )
7459, 63, 733eqtr3d 2516 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  =  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  ( if ( 0  <_  C ,  C ,  0 )  x.  X ) ) )
7554, 74breqtrrd 4473 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <_ 
( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
) )
7614, 22remulcld 9624 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  ( -u A  x.  X )  e.  RR )
779ltp1d 10476 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  <  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 ) )
78 max2 11388 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  e.  RR )  ->  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
7919, 18, 78sylancr 663 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  if ( 1  <_  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A ) ,  1 ) )
8079, 1syl6breqr 4487 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  X )
81 ledivmul 10418 . . . . . . . . . . . 12  |-  ( ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  e.  RR  /\  X  e.  RR  /\  ( -u A  e.  RR  /\  0  <  -u A ) )  ->  ( ( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  X 
<->  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  <_  ( -u A  x.  X ) ) )
8211, 22, 14, 16, 81syl112anc 1232 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  /  -u A )  <_  X  <->  ( ( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  <_  ( -u A  x.  X ) ) )
8380, 82mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  (
( B  +  if ( 0  <_  C ,  C ,  0 ) )  +  1 )  <_  ( -u A  x.  X ) )
849, 11, 76, 77, 83ltletrd 9741 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  <  ( -u A  x.  X )
)
8565, 58mulneg1d 10009 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  0 )  ->  ( -u A  x.  X )  =  -u ( A  x.  X ) )
86 df-neg 9808 . . . . . . . . . 10  |-  -u ( A  x.  X )  =  ( 0  -  ( A  x.  X
) )
8785, 86syl6eq 2524 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  ( -u A  x.  X )  =  ( 0  -  ( A  x.  X
) ) )
8884, 87breqtrd 4471 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  ( B  +  if (
0  <_  C ,  C ,  0 ) )  <  ( 0  -  ( A  x.  X ) ) )
8940, 9, 43ltaddsub2d 10153 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0  <->  ( B  +  if ( 0  <_  C ,  C ,  0 ) )  <  ( 0  -  ( A  x.  X ) ) ) )
9088, 89mpbird 232 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( A  x.  X
)  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0 )
9119a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  1  e.  RR )
92 0lt1 10075 . . . . . . . . . 10  |-  0  <  1
9392a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  <  0 )  ->  0  <  1 )
9443, 91, 22, 93, 51ltletrd 9741 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  0  <  X )
95 ltmul1 10392 . . . . . . . 8  |-  ( ( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  e.  RR  /\  0  e.  RR  /\  ( X  e.  RR  /\  0  <  X ) )  ->  ( (
( A  x.  X
)  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0  <->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  ( 0  x.  X ) ) )
9641, 43, 22, 94, 95syl112anc 1232 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  <  0  <->  ( ( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  ( 0  x.  X ) ) )
9790, 96mpbid 210 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  ( 0  x.  X ) )
9858mul02d 9777 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  (
0  x.  X )  =  0 )
9997, 98breqtrd 4471 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  X )  +  ( B  +  if ( 0  <_  C ,  C ,  0 ) ) )  x.  X
)  <  0 )
10039, 42, 43, 75, 99lelttrd 9739 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <  0 )
101 ltnle 9664 . . . . 5  |-  ( ( ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C )  <  0  <->  -.  0  <_  ( (
( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) ) )
10239, 6, 101sylancl 662 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  (
( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
)  <  0  <->  -.  0  <_  ( ( ( A  x.  ( X ^
2 ) )  +  ( B  x.  X
) )  +  C
) ) )
103100, 102mpbid 210 . . 3  |-  ( (
ph  /\  A  <  0 )  ->  -.  0  <_  ( ( ( A  x.  ( X ^ 2 ) )  +  ( B  x.  X ) )  +  C ) )
10433, 103pm2.65da 576 . 2  |-  ( ph  ->  -.  A  <  0
)
105 lelttric 9691 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  \/  A  <  0
) )
1066, 12, 105sylancr 663 . . 3  |-  ( ph  ->  ( 0  <_  A  \/  A  <  0
) )
107106ord 377 . 2  |-  ( ph  ->  ( -.  0  <_  A  ->  A  <  0
) )
108104, 107mt3d 125 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   ifcif 3939   class class class wbr 4447  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    <_ cle 9629    - cmin 9805   -ucneg 9806    / cdiv 10206   2c2 10585   ^cexp 12134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-seq 12076  df-exp 12135
This theorem is referenced by:  discr  12271
  Copyright terms: Public domain W3C validator