MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirith2 Structured version   Unicode version

Theorem dirith2 23441
Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to  N. Theorem 9.4.1 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.u  |-  U  =  (Unit `  Z )
rpvmasum.b  |-  ( ph  ->  A  e.  U )
rpvmasum.t  |-  T  =  ( `' L " { A } )
Assertion
Ref Expression
dirith2  |-  ( ph  ->  ( Prime  i^i  T ) 
~~  NN )

Proof of Theorem dirith2
Dummy variables  n  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 10538 . . . 4  |-  NN  e.  _V
2 inss1 3718 . . . . 5  |-  ( Prime  i^i  T )  C_  Prime
3 prmnn 14075 . . . . . 6  |-  ( p  e.  Prime  ->  p  e.  NN )
43ssriv 3508 . . . . 5  |-  Prime  C_  NN
52, 4sstri 3513 . . . 4  |-  ( Prime  i^i  T )  C_  NN
6 ssdomg 7558 . . . 4  |-  ( NN  e.  _V  ->  (
( Prime  i^i  T ) 
C_  NN  ->  ( Prime  i^i  T )  ~<_  NN ) )
71, 5, 6mp2 9 . . 3  |-  ( Prime  i^i  T )  ~<_  NN
87a1i 11 . 2  |-  ( ph  ->  ( Prime  i^i  T )  ~<_  NN )
9 logno1 22745 . . . 4  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O(1)
10 rpvmasum.a . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
1110adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  N  e.  NN )
1211phicld 14157 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( phi `  N )  e.  NN )
1312nnred 10547 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( phi `  N )  e.  RR )
1413adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  RR )
15 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( Prime  i^i  T )  e.  Fin )
16 inss2 3719 . . . . . . . . . 10  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i  T )
17 ssfi 7737 . . . . . . . . . 10  |-  ( ( ( Prime  i^i  T )  e.  Fin  /\  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i  T ) )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  e.  Fin )
1815, 16, 17sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  e.  Fin )
1916sseli 3500 . . . . . . . . . 10  |-  ( n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  ->  n  e.  ( Prime  i^i  T )
)
20 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  n  e.  ( Prime  i^i  T )
)
215, 20sseldi 3502 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  n  e.  NN )
2221nnrpd 11251 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  n  e.  RR+ )
23 relogcl 22691 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
2422, 23syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( log `  n )  e.  RR )
2524, 21nndivred 10580 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( ( log `  n )  /  n )  e.  RR )
2619, 25sylan2 474 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  ( ( log `  n )  /  n )  e.  RR )
2718, 26fsumrecl 13515 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n )  e.  RR )
2827adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n )  e.  RR )
29 rpssre 11226 . . . . . . . 8  |-  RR+  C_  RR
3013recnd 9618 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( phi `  N )  e.  CC )
31 o1const 13401 . . . . . . . 8  |-  ( (
RR+  C_  RR  /\  ( phi `  N )  e.  CC )  ->  (
x  e.  RR+  |->  ( phi `  N ) )  e.  O(1) )
3229, 30, 31sylancr 663 . . . . . . 7  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( phi `  N ) )  e.  O(1) )
3329a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  RR+  C_  RR )
34 1red 9607 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  1  e.  RR )
3515, 25fsumrecl 13515 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  sum_ n  e.  ( Prime  i^i  T )
( ( log `  n
)  /  n )  e.  RR )
36 log1 22698 . . . . . . . . . . . . 13  |-  ( log `  1 )  =  0
3721nnge1d 10574 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  1  <_  n )
38 1rp 11220 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
39 logleb 22716 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR+  /\  n  e.  RR+ )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
4038, 22, 39sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( 1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
4137, 40mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( log `  1 )  <_  ( log `  n ) )
4236, 41syl5eqbrr 4481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  0  <_  ( log `  n ) )
4324, 22, 42divge0d 11288 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  0  <_  ( ( log `  n
)  /  n ) )
4416a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i 
T ) )
4515, 25, 43, 44fsumless 13569 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n )  <_  sum_ n  e.  ( Prime  i^i  T ) ( ( log `  n )  /  n ) )
4645adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  (
x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n )  <_  sum_ n  e.  ( Prime  i^i  T ) ( ( log `  n )  /  n ) )
4733, 28, 34, 35, 46ello1d 13305 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  e.  <_O(1) )
48 0red 9593 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  0  e.  RR )
4919, 43sylan2 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  0  <_  ( ( log `  n
)  /  n ) )
5018, 26, 49fsumge0 13568 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  0  <_  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n ) )
5150adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  0  <_ 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )
5228, 48, 51o1lo12 13320 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n ) )  e.  O(1)  <->  ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  e.  <_O(1) ) )
5347, 52mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  e.  O(1) )
5414, 28, 32, 53o1mul2 13406 . . . . . 6  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) ) )  e.  O(1) )
5513, 27remulcld 9620 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) )  e.  RR )
5655recnd 9618 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) )  e.  CC )
5756adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n ) )  e.  CC )
58 relogcl 22691 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
5958adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
6059recnd 9618 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
61 rpvmasum.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
62 rpvmasum.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
63 rpvmasum.u . . . . . . . . 9  |-  U  =  (Unit `  Z )
64 rpvmasum.b . . . . . . . . 9  |-  ( ph  ->  A  e.  U )
65 rpvmasum.t . . . . . . . . 9  |-  T  =  ( `' L " { A } )
6661, 62, 10, 63, 64, 65rplogsum 23440 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) )  -  ( log `  x ) ) )  e.  O(1) )
6766adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  -  ( log `  x
) ) )  e.  O(1) )
6857, 60, 67o1dif 13411 . . . . . 6  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( x  e.  RR+  |->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) ) )  e.  O(1)  <->  ( x  e.  RR+  |->  ( log `  x
) )  e.  O(1) ) )
6954, 68mpbid 210 . . . . 5  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( log `  x
) )  e.  O(1) )
7069ex 434 . . . 4  |-  ( ph  ->  ( ( Prime  i^i  T )  e.  Fin  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O(1) ) )
719, 70mtoi 178 . . 3  |-  ( ph  ->  -.  ( Prime  i^i  T )  e.  Fin )
72 nnenom 12054 . . . . 5  |-  NN  ~~  om
73 sdomentr 7648 . . . . 5  |-  ( ( ( Prime  i^i  T ) 
~<  NN  /\  NN  ~~  om )  ->  ( Prime  i^i 
T )  ~<  om )
7472, 73mpan2 671 . . . 4  |-  ( ( Prime  i^i  T )  ~<  NN  ->  ( Prime  i^i 
T )  ~<  om )
75 isfinite2 7774 . . . 4  |-  ( ( Prime  i^i  T )  ~<  om  ->  ( Prime  i^i 
T )  e.  Fin )
7674, 75syl 16 . . 3  |-  ( ( Prime  i^i  T )  ~<  NN  ->  ( Prime  i^i 
T )  e.  Fin )
7771, 76nsyl 121 . 2  |-  ( ph  ->  -.  ( Prime  i^i  T )  ~<  NN )
78 bren2 7543 . 2  |-  ( ( Prime  i^i  T )  ~~  NN  <->  ( ( Prime  i^i  T )  ~<_  NN  /\  -.  ( Prime  i^i  T ) 
~<  NN ) )
798, 77, 78sylanbrc 664 1  |-  ( ph  ->  ( Prime  i^i  T ) 
~~  NN )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   "cima 5002   ` cfv 5586  (class class class)co 6282   omcom 6678    ~~ cen 7510    ~<_ cdom 7511    ~< csdm 7512   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   RR+crp 11216   ...cfz 11668   |_cfl 11891   O(1)co1 13268   <_O(1)clo1 13269   sum_csu 13467   Primecprime 14072   phicphi 14149  Unitcui 17072   ZRHomczrh 18304  ℤ/nczn 18307   logclog 22670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-rpss 6562  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-word 12504  df-concat 12506  df-s1 12507  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-o1 13272  df-lo1 13273  df-sum 13468  df-ef 13661  df-e 13662  df-sin 13663  df-cos 13664  df-tan 13665  df-pi 13666  df-dvds 13844  df-gcd 14000  df-prm 14073  df-numer 14123  df-denom 14124  df-phi 14151  df-pc 14216  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-divs 14760  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-mulg 15861  df-subg 15993  df-nsg 15994  df-eqg 15995  df-ghm 16060  df-gim 16102  df-ga 16123  df-cntz 16150  df-oppg 16176  df-od 16349  df-gex 16350  df-pgp 16351  df-lsm 16452  df-pj1 16453  df-cmn 16596  df-abl 16597  df-cyg 16672  df-dprd 16817  df-dpj 16818  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-rnghom 17148  df-drng 17181  df-subrg 17210  df-lmod 17297  df-lss 17362  df-lsp 17401  df-sra 17601  df-rgmod 17602  df-lidl 17603  df-rsp 17604  df-2idl 17662  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-zring 18257  df-zrh 18308  df-zn 18311  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-cmp 19653  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-0p 21812  df-limc 22005  df-dv 22006  df-ply 22320  df-idp 22321  df-coe 22322  df-dgr 22323  df-quot 22421  df-log 22672  df-cxp 22673  df-em 23050  df-cht 23098  df-vma 23099  df-chp 23100  df-ppi 23101  df-mu 23102  df-dchr 23236
This theorem is referenced by:  dirith  23442
  Copyright terms: Public domain W3C validator