MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirith2 Structured version   Unicode version

Theorem dirith2 23839
Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to  N. Theorem 9.4.1 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.u  |-  U  =  (Unit `  Z )
rpvmasum.b  |-  ( ph  ->  A  e.  U )
rpvmasum.t  |-  T  =  ( `' L " { A } )
Assertion
Ref Expression
dirith2  |-  ( ph  ->  ( Prime  i^i  T ) 
~~  NN )

Proof of Theorem dirith2
Dummy variables  n  x  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 10562 . . . 4  |-  NN  e.  _V
2 inss1 3714 . . . . 5  |-  ( Prime  i^i  T )  C_  Prime
3 prmnn 14232 . . . . . 6  |-  ( p  e.  Prime  ->  p  e.  NN )
43ssriv 3503 . . . . 5  |-  Prime  C_  NN
52, 4sstri 3508 . . . 4  |-  ( Prime  i^i  T )  C_  NN
6 ssdomg 7580 . . . 4  |-  ( NN  e.  _V  ->  (
( Prime  i^i  T ) 
C_  NN  ->  ( Prime  i^i  T )  ~<_  NN ) )
71, 5, 6mp2 9 . . 3  |-  ( Prime  i^i  T )  ~<_  NN
87a1i 11 . 2  |-  ( ph  ->  ( Prime  i^i  T )  ~<_  NN )
9 logno1 23143 . . . 4  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O(1)
10 rpvmasum.a . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
1110adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  N  e.  NN )
1211phicld 14314 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( phi `  N )  e.  NN )
1312nnred 10571 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( phi `  N )  e.  RR )
1413adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  RR )
15 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( Prime  i^i  T )  e.  Fin )
16 inss2 3715 . . . . . . . . . 10  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i  T )
17 ssfi 7759 . . . . . . . . . 10  |-  ( ( ( Prime  i^i  T )  e.  Fin  /\  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i  T ) )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  e.  Fin )
1815, 16, 17sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  e.  Fin )
1916sseli 3495 . . . . . . . . . 10  |-  ( n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  ->  n  e.  ( Prime  i^i  T )
)
20 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  n  e.  ( Prime  i^i  T )
)
215, 20sseldi 3497 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  n  e.  NN )
2221nnrpd 11280 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  n  e.  RR+ )
23 relogcl 23089 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
2422, 23syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( log `  n )  e.  RR )
2524, 21nndivred 10605 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( ( log `  n )  /  n )  e.  RR )
2619, 25sylan2 474 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  ( ( log `  n )  /  n )  e.  RR )
2718, 26fsumrecl 13568 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n )  e.  RR )
2827adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n )  e.  RR )
29 rpssre 11255 . . . . . . . 8  |-  RR+  C_  RR
3013recnd 9639 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( phi `  N )  e.  CC )
31 o1const 13454 . . . . . . . 8  |-  ( (
RR+  C_  RR  /\  ( phi `  N )  e.  CC )  ->  (
x  e.  RR+  |->  ( phi `  N ) )  e.  O(1) )
3229, 30, 31sylancr 663 . . . . . . 7  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( phi `  N ) )  e.  O(1) )
3329a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  RR+  C_  RR )
34 1red 9628 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  1  e.  RR )
3515, 25fsumrecl 13568 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  sum_ n  e.  ( Prime  i^i  T )
( ( log `  n
)  /  n )  e.  RR )
36 log1 23096 . . . . . . . . . . . . 13  |-  ( log `  1 )  =  0
3721nnge1d 10599 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  1  <_  n )
38 1rp 11249 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
39 logleb 23114 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR+  /\  n  e.  RR+ )  ->  (
1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
4038, 22, 39sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( 1  <_  n  <->  ( log `  1 )  <_  ( log `  n ) ) )
4137, 40mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  ( log `  1 )  <_  ( log `  n ) )
4236, 41syl5eqbrr 4490 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  0  <_  ( log `  n ) )
4324, 22, 42divge0d 11317 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( Prime  i^i  T ) )  ->  0  <_  ( ( log `  n
)  /  n ) )
4416a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) )  C_  ( Prime  i^i 
T ) )
4515, 25, 43, 44fsumless 13622 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n )  <_  sum_ n  e.  ( Prime  i^i  T ) ( ( log `  n )  /  n ) )
4645adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  (
x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( ( 1 ... ( |_
`  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n )  <_  sum_ n  e.  ( Prime  i^i  T ) ( ( log `  n )  /  n ) )
4733, 28, 34, 35, 46ello1d 13358 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  e.  <_O(1) )
48 0red 9614 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  0  e.  RR )
4919, 43sylan2 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) )  ->  0  <_  ( ( log `  n
)  /  n ) )
5018, 26, 49fsumge0 13621 . . . . . . . . . 10  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  0  <_  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n ) )
5150adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  0  <_ 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )
5228, 48, 51o1lo12 13373 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n ) )  e.  O(1)  <->  ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  e.  <_O(1) ) )
5347, 52mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  e.  O(1) )
5414, 28, 32, 53o1mul2 13459 . . . . . 6  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) ) )  e.  O(1) )
5513, 27remulcld 9641 . . . . . . . . 9  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) )  e.  RR )
5655recnd 9639 . . . . . . . 8  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) )  e.  CC )
5756adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n
)  /  n ) )  e.  CC )
58 relogcl 23089 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
5958adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
6059recnd 9639 . . . . . . 7  |-  ( ( ( ph  /\  ( Prime  i^i  T )  e. 
Fin )  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
61 rpvmasum.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
62 rpvmasum.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
63 rpvmasum.u . . . . . . . . 9  |-  U  =  (Unit `  Z )
64 rpvmasum.b . . . . . . . . 9  |-  ( ph  ->  A  e.  U )
65 rpvmasum.t . . . . . . . . 9  |-  T  =  ( `' L " { A } )
6661, 62, 10, 63, 64, 65rplogsum 23838 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n
) )  -  ( log `  x ) ) )  e.  O(1) )
6766adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) )  -  ( log `  x
) ) )  e.  O(1) )
6857, 60, 67o1dif 13464 . . . . . 6  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( ( x  e.  RR+  |->  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( Prime  i^i  T ) ) ( ( log `  n )  /  n ) ) )  e.  O(1)  <->  ( x  e.  RR+  |->  ( log `  x
) )  e.  O(1) ) )
6954, 68mpbid 210 . . . . 5  |-  ( (
ph  /\  ( Prime  i^i 
T )  e.  Fin )  ->  ( x  e.  RR+  |->  ( log `  x
) )  e.  O(1) )
7069ex 434 . . . 4  |-  ( ph  ->  ( ( Prime  i^i  T )  e.  Fin  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O(1) ) )
719, 70mtoi 178 . . 3  |-  ( ph  ->  -.  ( Prime  i^i  T )  e.  Fin )
72 nnenom 12093 . . . . 5  |-  NN  ~~  om
73 sdomentr 7670 . . . . 5  |-  ( ( ( Prime  i^i  T ) 
~<  NN  /\  NN  ~~  om )  ->  ( Prime  i^i 
T )  ~<  om )
7472, 73mpan2 671 . . . 4  |-  ( ( Prime  i^i  T )  ~<  NN  ->  ( Prime  i^i 
T )  ~<  om )
75 isfinite2 7796 . . . 4  |-  ( ( Prime  i^i  T )  ~<  om  ->  ( Prime  i^i 
T )  e.  Fin )
7674, 75syl 16 . . 3  |-  ( ( Prime  i^i  T )  ~<  NN  ->  ( Prime  i^i 
T )  e.  Fin )
7771, 76nsyl 121 . 2  |-  ( ph  ->  -.  ( Prime  i^i  T )  ~<  NN )
78 bren2 7565 . 2  |-  ( ( Prime  i^i  T )  ~~  NN  <->  ( ( Prime  i^i  T )  ~<_  NN  /\  -.  ( Prime  i^i  T ) 
~<  NN ) )
798, 77, 78sylanbrc 664 1  |-  ( ph  ->  ( Prime  i^i  T ) 
~~  NN )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109    i^i cin 3470    C_ wss 3471   {csn 4032   class class class wbr 4456    |-> cmpt 4515   `'ccnv 5007   "cima 5011   ` cfv 5594  (class class class)co 6296   omcom 6699    ~~ cen 7532    ~<_ cdom 7533    ~< csdm 7534   Fincfn 7535   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   RR+crp 11245   ...cfz 11697   |_cfl 11930   O(1)co1 13321   <_O(1)clo1 13322   sum_csu 13520   Primecprime 14229   phicphi 14306  Unitcui 17415   ZRHomczrh 18664  ℤ/nczn 18667   logclog 23068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-rpss 6579  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-word 12546  df-concat 12548  df-s1 12549  df-shft 12912  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324  df-o1 13325  df-lo1 13326  df-sum 13521  df-ef 13815  df-e 13816  df-sin 13817  df-cos 13818  df-tan 13819  df-pi 13820  df-dvds 13999  df-gcd 14157  df-prm 14230  df-numer 14280  df-denom 14281  df-phi 14308  df-pc 14373  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-qus 14926  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-nsg 16326  df-eqg 16327  df-ghm 16392  df-gim 16434  df-ga 16455  df-cntz 16482  df-oppg 16508  df-od 16680  df-gex 16681  df-pgp 16682  df-lsm 16783  df-pj1 16784  df-cmn 16927  df-abl 16928  df-cyg 17008  df-dprd 17153  df-dpj 17154  df-mgp 17269  df-ur 17281  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-rnghom 17491  df-drng 17525  df-subrg 17554  df-lmod 17641  df-lss 17706  df-lsp 17745  df-sra 17945  df-rgmod 17946  df-lidl 17947  df-rsp 17948  df-2idl 18007  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-zring 18616  df-zrh 18668  df-zn 18671  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lp 19764  df-perf 19765  df-cn 19855  df-cnp 19856  df-haus 19943  df-cmp 20014  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cncf 21508  df-0p 22203  df-limc 22396  df-dv 22397  df-ply 22711  df-idp 22712  df-coe 22713  df-dgr 22714  df-quot 22813  df-log 23070  df-cxp 23071  df-em 23448  df-cht 23496  df-vma 23497  df-chp 23498  df-ppi 23499  df-mu 23500  df-dchr 23634
This theorem is referenced by:  dirith  23840
  Copyright terms: Public domain W3C validator