MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipfval Structured version   Visualization version   Unicode version

Theorem dipfval 26350
Description: The inner product function on a normed complex vector space. The definition is meaningful for vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law. (Contributed by NM, 10-Apr-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipfval.1  |-  X  =  ( BaseSet `  U )
dipfval.2  |-  G  =  ( +v `  U
)
dipfval.4  |-  S  =  ( .sOLD `  U )
dipfval.6  |-  N  =  ( normCV `  U )
dipfval.7  |-  P  =  ( .iOLD `  U )
Assertion
Ref Expression
dipfval  |-  ( U  e.  NrmCVec  ->  P  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
Distinct variable groups:    x, k,
y, G    k, N, x, y    S, k, x, y    U, k, x, y   
k, X, x, y
Allowed substitution hints:    P( x, y, k)

Proof of Theorem dipfval
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 dipfval.7 . 2  |-  P  =  ( .iOLD `  U )
2 fveq2 5870 . . . . 5  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  ( BaseSet `  U )
)
3 dipfval.1 . . . . 5  |-  X  =  ( BaseSet `  U )
42, 3syl6eqr 2505 . . . 4  |-  ( u  =  U  ->  ( BaseSet
`  u )  =  X )
5 fveq2 5870 . . . . . . . . . 10  |-  ( u  =  U  ->  ( normCV `  u )  =  (
normCV
`  U ) )
6 dipfval.6 . . . . . . . . . 10  |-  N  =  ( normCV `  U )
75, 6syl6eqr 2505 . . . . . . . . 9  |-  ( u  =  U  ->  ( normCV `  u )  =  N )
8 fveq2 5870 . . . . . . . . . . 11  |-  ( u  =  U  ->  ( +v `  u )  =  ( +v `  U
) )
9 dipfval.2 . . . . . . . . . . 11  |-  G  =  ( +v `  U
)
108, 9syl6eqr 2505 . . . . . . . . . 10  |-  ( u  =  U  ->  ( +v `  u )  =  G )
11 eqidd 2454 . . . . . . . . . 10  |-  ( u  =  U  ->  x  =  x )
12 fveq2 5870 . . . . . . . . . . . 12  |-  ( u  =  U  ->  ( .sOLD `  u )  =  ( .sOLD `  U ) )
13 dipfval.4 . . . . . . . . . . . 12  |-  S  =  ( .sOLD `  U )
1412, 13syl6eqr 2505 . . . . . . . . . . 11  |-  ( u  =  U  ->  ( .sOLD `  u )  =  S )
1514oveqd 6312 . . . . . . . . . 10  |-  ( u  =  U  ->  (
( _i ^ k
) ( .sOLD `  u ) y )  =  ( ( _i
^ k ) S y ) )
1610, 11, 15oveq123d 6316 . . . . . . . . 9  |-  ( u  =  U  ->  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) )  =  ( x G ( ( _i
^ k ) S y ) ) )
177, 16fveq12d 5876 . . . . . . . 8  |-  ( u  =  U  ->  (
( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) )  =  ( N `  ( x G ( ( _i
^ k ) S y ) ) ) )
1817oveq1d 6310 . . . . . . 7  |-  ( u  =  U  ->  (
( ( normCV `  u
) `  ( x
( +v `  u
) ( ( _i
^ k ) ( .sOLD `  u
) y ) ) ) ^ 2 )  =  ( ( N `
 ( x G ( ( _i ^
k ) S y ) ) ) ^
2 ) )
1918oveq2d 6311 . . . . . 6  |-  ( u  =  U  ->  (
( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  =  ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) ) )
2019sumeq2sdv 13782 . . . . 5  |-  ( u  =  U  ->  sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( ( normCV `  u ) `  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  =  sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) ) )
2120oveq1d 6310 . . . 4  |-  ( u  =  U  ->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
)  =  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) )
224, 4, 21mpt2eq123dv 6358 . . 3  |-  ( u  =  U  ->  (
x  e.  ( BaseSet `  u ) ,  y  e.  ( BaseSet `  u
)  |->  ( sum_ k  e.  ( 1 ... 4
) ( ( _i
^ k )  x.  ( ( ( normCV `  u ) `  (
x ( +v `  u ) ( ( _i ^ k ) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
) )  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
23 df-dip 26349 . . 3  |-  .iOLD  =  ( u  e.  NrmCVec 
|->  ( x  e.  (
BaseSet `  u ) ,  y  e.  ( BaseSet `  u )  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( ( normCV `  u ) `  ( x ( +v
`  u ) ( ( _i ^ k
) ( .sOLD `  u ) y ) ) ) ^ 2 ) )  /  4
) ) )
24 fvex 5880 . . . . 5  |-  ( BaseSet `  U )  e.  _V
253, 24eqeltri 2527 . . . 4  |-  X  e. 
_V
2625, 25mpt2ex 6875 . . 3  |-  ( x  e.  X ,  y  e.  X  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^ k
)  x.  ( ( N `  ( x G ( ( _i
^ k ) S y ) ) ) ^ 2 ) )  /  4 ) )  e.  _V
2722, 23, 26fvmpt 5953 . 2  |-  ( U  e.  NrmCVec  ->  ( .iOLD `  U )  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
281, 27syl5eq 2499 1  |-  ( U  e.  NrmCVec  ->  P  =  ( x  e.  X , 
y  e.  X  |->  (
sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( N `  (
x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) )  /  4 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1446    e. wcel 1889   _Vcvv 3047   ` cfv 5585  (class class class)co 6295    |-> cmpt2 6297   1c1 9545   _ici 9546    x. cmul 9549    / cdiv 10276   2c2 10666   4c4 10668   ...cfz 11791   ^cexp 12279   sum_csu 13764   NrmCVeccnv 26215   +vcpv 26216   BaseSetcba 26217   .sOLDcns 26218   normCVcnmcv 26221   .iOLDcdip 26348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792  df-seq 12221  df-sum 13765  df-dip 26349
This theorem is referenced by:  ipval  26351  ipf  26364  dipcn  26371
  Copyright terms: Public domain W3C validator