MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdi Structured version   Unicode version

Theorem dipdi 24243
Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1  |-  X  =  ( BaseSet `  U )
dipdir.2  |-  G  =  ( +v `  U
)
dipdir.7  |-  P  =  ( .iOLD `  U )
Assertion
Ref Expression
dipdi  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A P ( B G C ) )  =  ( ( A P B )  +  ( A P C ) ) )

Proof of Theorem dipdi
StepHypRef Expression
1 id 22 . . 3  |-  ( ( C  e.  X  /\  B  e.  X  /\  A  e.  X )  ->  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )
213com13 1192 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )
3 id 22 . . . . . 6  |-  ( ( B  e.  X  /\  C  e.  X  /\  A  e.  X )  ->  ( B  e.  X  /\  C  e.  X  /\  A  e.  X
) )
433com12 1191 . . . . 5  |-  ( ( C  e.  X  /\  B  e.  X  /\  A  e.  X )  ->  ( B  e.  X  /\  C  e.  X  /\  A  e.  X
) )
5 dipdir.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
6 dipdir.2 . . . . . 6  |-  G  =  ( +v `  U
)
7 dipdir.7 . . . . . 6  |-  P  =  ( .iOLD `  U )
85, 6, 7dipdir 24242 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( B  e.  X  /\  C  e.  X  /\  A  e.  X
) )  ->  (
( B G C ) P A )  =  ( ( B P A )  +  ( C P A ) ) )
94, 8sylan2 474 . . . 4  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
( B G C ) P A )  =  ( ( B P A )  +  ( C P A ) ) )
109fveq2d 5695 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
* `  ( ( B G C ) P A ) )  =  ( * `  (
( B P A )  +  ( C P A ) ) ) )
11 phnv 24214 . . . 4  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
12 simpl 457 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  U  e.  NrmCVec )
135, 6nvgcl 23998 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  C  e.  X )  ->  ( B G C )  e.  X )
14133com23 1193 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  B  e.  X )  ->  ( B G C )  e.  X )
15143adant3r3 1198 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( B G C )  e.  X
)
16 simpr3 996 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  A  e.  X )
175, 7dipcj 24112 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( B G C )  e.  X  /\  A  e.  X )  ->  (
* `  ( ( B G C ) P A ) )  =  ( A P ( B G C ) ) )
1812, 15, 16, 17syl3anc 1218 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( ( B G C ) P A ) )  =  ( A P ( B G C ) ) )
1911, 18sylan 471 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
* `  ( ( B G C ) P A ) )  =  ( A P ( B G C ) ) )
205, 7dipcl 24110 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  e.  CC )
21203adant3r1 1196 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( B P A )  e.  CC )
225, 7dipcl 24110 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  A  e.  X )  ->  ( C P A )  e.  CC )
23223adant3r2 1197 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( C P A )  e.  CC )
2421, 23cjaddd 12709 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( ( B P A )  +  ( C P A ) ) )  =  ( ( * `  ( B P A ) )  +  ( * `  ( C P A ) ) ) )
255, 7dipcj 24112 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
* `  ( B P A ) )  =  ( A P B ) )
26253adant3r1 1196 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( B P A ) )  =  ( A P B ) )
275, 7dipcj 24112 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  A  e.  X )  ->  (
* `  ( C P A ) )  =  ( A P C ) )
28273adant3r2 1197 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( C P A ) )  =  ( A P C ) )
2926, 28oveq12d 6109 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( (
* `  ( B P A ) )  +  ( * `  ( C P A ) ) )  =  ( ( A P B )  +  ( A P C ) ) )
3024, 29eqtrd 2475 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( ( B P A )  +  ( C P A ) ) )  =  ( ( A P B )  +  ( A P C ) ) )
3111, 30sylan 471 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
* `  ( ( B P A )  +  ( C P A ) ) )  =  ( ( A P B )  +  ( A P C ) ) )
3210, 19, 313eqtr3d 2483 . 2  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  ( A P ( B G C ) )  =  ( ( A P B )  +  ( A P C ) ) )
332, 32sylan2 474 1  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A P ( B G C ) )  =  ( ( A P B )  +  ( A P C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5418  (class class class)co 6091   CCcc 9280    + caddc 9285   *ccj 12585   NrmCVeccnv 23962   +vcpv 23963   BaseSetcba 23964   .iOLDcdip 24095   CPreHil OLDccphlo 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-grpo 23678  df-gid 23679  df-ginv 23680  df-ablo 23769  df-vc 23924  df-nv 23970  df-va 23973  df-ba 23974  df-sm 23975  df-0v 23976  df-nmcv 23978  df-dip 24096  df-ph 24213
This theorem is referenced by:  ip2dii  24244
  Copyright terms: Public domain W3C validator