MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdi Structured version   Unicode version

Theorem dipdi 25431
Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1  |-  X  =  ( BaseSet `  U )
dipdir.2  |-  G  =  ( +v `  U
)
dipdir.7  |-  P  =  ( .iOLD `  U )
Assertion
Ref Expression
dipdi  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A P ( B G C ) )  =  ( ( A P B )  +  ( A P C ) ) )

Proof of Theorem dipdi
StepHypRef Expression
1 id 22 . . 3  |-  ( ( C  e.  X  /\  B  e.  X  /\  A  e.  X )  ->  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )
213com13 1201 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )
3 id 22 . . . . . 6  |-  ( ( B  e.  X  /\  C  e.  X  /\  A  e.  X )  ->  ( B  e.  X  /\  C  e.  X  /\  A  e.  X
) )
433com12 1200 . . . . 5  |-  ( ( C  e.  X  /\  B  e.  X  /\  A  e.  X )  ->  ( B  e.  X  /\  C  e.  X  /\  A  e.  X
) )
5 dipdir.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
6 dipdir.2 . . . . . 6  |-  G  =  ( +v `  U
)
7 dipdir.7 . . . . . 6  |-  P  =  ( .iOLD `  U )
85, 6, 7dipdir 25430 . . . . 5  |-  ( ( U  e.  CPreHil OLD  /\  ( B  e.  X  /\  C  e.  X  /\  A  e.  X
) )  ->  (
( B G C ) P A )  =  ( ( B P A )  +  ( C P A ) ) )
94, 8sylan2 474 . . . 4  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
( B G C ) P A )  =  ( ( B P A )  +  ( C P A ) ) )
109fveq2d 5868 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
* `  ( ( B G C ) P A ) )  =  ( * `  (
( B P A )  +  ( C P A ) ) ) )
11 phnv 25402 . . . 4  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
12 simpl 457 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  U  e.  NrmCVec )
135, 6nvgcl 25186 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  C  e.  X )  ->  ( B G C )  e.  X )
14133com23 1202 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  B  e.  X )  ->  ( B G C )  e.  X )
15143adant3r3 1207 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( B G C )  e.  X
)
16 simpr3 1004 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  A  e.  X )
175, 7dipcj 25300 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( B G C )  e.  X  /\  A  e.  X )  ->  (
* `  ( ( B G C ) P A ) )  =  ( A P ( B G C ) ) )
1812, 15, 16, 17syl3anc 1228 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( ( B G C ) P A ) )  =  ( A P ( B G C ) ) )
1911, 18sylan 471 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
* `  ( ( B G C ) P A ) )  =  ( A P ( B G C ) ) )
205, 7dipcl 25298 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  e.  CC )
21203adant3r1 1205 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( B P A )  e.  CC )
225, 7dipcl 25298 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  A  e.  X )  ->  ( C P A )  e.  CC )
23223adant3r2 1206 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( C P A )  e.  CC )
2421, 23cjaddd 13010 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( ( B P A )  +  ( C P A ) ) )  =  ( ( * `  ( B P A ) )  +  ( * `  ( C P A ) ) ) )
255, 7dipcj 25300 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  (
* `  ( B P A ) )  =  ( A P B ) )
26253adant3r1 1205 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( B P A ) )  =  ( A P B ) )
275, 7dipcj 25300 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  A  e.  X )  ->  (
* `  ( C P A ) )  =  ( A P C ) )
28273adant3r2 1206 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( C P A ) )  =  ( A P C ) )
2926, 28oveq12d 6300 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( (
* `  ( B P A ) )  +  ( * `  ( C P A ) ) )  =  ( ( A P B )  +  ( A P C ) ) )
3024, 29eqtrd 2508 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X )
)  ->  ( * `  ( ( B P A )  +  ( C P A ) ) )  =  ( ( A P B )  +  ( A P C ) ) )
3111, 30sylan 471 . . 3  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  (
* `  ( ( B P A )  +  ( C P A ) ) )  =  ( ( A P B )  +  ( A P C ) ) )
3210, 19, 313eqtr3d 2516 . 2  |-  ( ( U  e.  CPreHil OLD  /\  ( C  e.  X  /\  B  e.  X  /\  A  e.  X
) )  ->  ( A P ( B G C ) )  =  ( ( A P B )  +  ( A P C ) ) )
332, 32sylan2 474 1  |-  ( ( U  e.  CPreHil OLD  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A P ( B G C ) )  =  ( ( A P B )  +  ( A P C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   CCcc 9486    + caddc 9491   *ccj 12886   NrmCVeccnv 25150   +vcpv 25151   BaseSetcba 25152   .iOLDcdip 25283   CPreHil OLDccphlo 25400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-sum 13465  df-grpo 24866  df-gid 24867  df-ginv 24868  df-ablo 24957  df-vc 25112  df-nv 25158  df-va 25161  df-ba 25162  df-sm 25163  df-0v 25164  df-nmcv 25166  df-dip 25284  df-ph 25401
This theorem is referenced by:  ip2dii  25432
  Copyright terms: Public domain W3C validator