Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrw Structured version   Visualization version   Unicode version

Theorem diophrw 35672
Description: Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.)
Assertion
Ref Expression
diophrw  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  { a  |  E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  ( ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) ) `  b )  =  0 ) }  =  {
a  |  E. c  e.  ( NN0  ^m  T
) ( a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) } )
Distinct variable groups:    S, a,
b, c, d    T, a, b, c, d    M, a, b, c, d    O, a, b, c, d    P, b, c, d
Allowed substitution hint:    P( a)

Proof of Theorem diophrw
StepHypRef Expression
1 simpr 468 . . . . . . . . . 10  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  ->  b  e.  ( NN0  ^m  S
) )
2 nn0ex 10899 . . . . . . . . . . 11  |-  NN0  e.  _V
3 simp1 1030 . . . . . . . . . . . 12  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  S  e.  _V )
43adantr 472 . . . . . . . . . . 11  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  ->  S  e.  _V )
5 elmapg 7503 . . . . . . . . . . 11  |-  ( ( NN0  e.  _V  /\  S  e.  _V )  ->  ( b  e.  ( NN0  ^m  S )  <-> 
b : S --> NN0 )
)
62, 4, 5sylancr 676 . . . . . . . . . 10  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  ->  (
b  e.  ( NN0 
^m  S )  <->  b : S
--> NN0 ) )
71, 6mpbid 215 . . . . . . . . 9  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  ->  b : S --> NN0 )
87adantr 472 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  b : S
--> NN0 )
9 simp2 1031 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  M : T -1-1-> S )
10 f1f 5792 . . . . . . . . . 10  |-  ( M : T -1-1-> S  ->  M : T --> S )
119, 10syl 17 . . . . . . . . 9  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  M : T
--> S )
1211ad2antrr 740 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  M : T
--> S )
13 fco 5751 . . . . . . . 8  |-  ( ( b : S --> NN0  /\  M : T --> S )  ->  ( b  o.  M ) : T --> NN0 )
148, 12, 13syl2anc 673 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( b  o.  M ) : T --> NN0 )
15 f1dmex 6782 . . . . . . . . . 10  |-  ( ( M : T -1-1-> S  /\  S  e.  _V )  ->  T  e.  _V )
169, 3, 15syl2anc 673 . . . . . . . . 9  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  T  e.  _V )
1716ad2antrr 740 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  T  e.  _V )
18 elmapg 7503 . . . . . . . 8  |-  ( ( NN0  e.  _V  /\  T  e.  _V )  ->  ( ( b  o.  M )  e.  ( NN0  ^m  T )  <-> 
( b  o.  M
) : T --> NN0 )
)
192, 17, 18sylancr 676 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( (
b  o.  M )  e.  ( NN0  ^m  T )  <->  ( b  o.  M ) : T --> NN0 ) )
2014, 19mpbird 240 . . . . . 6  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( b  o.  M )  e.  ( NN0  ^m  T ) )
21 simprl 772 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  a  =  ( b  |`  O ) )
22 resco 5346 . . . . . . . 8  |-  ( ( b  o.  M )  |`  O )  =  ( b  o.  ( M  |`  O ) )
23 simpll3 1071 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( M  |`  O )  =  (  _I  |`  O )
)
2423coeq2d 5002 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( b  o.  ( M  |`  O ) )  =  ( b  o.  (  _I  |`  O ) ) )
25 coires1 5360 . . . . . . . . 9  |-  ( b  o.  (  _I  |`  O ) )  =  ( b  |`  O )
2624, 25syl6eq 2521 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( b  o.  ( M  |`  O ) )  =  ( b  |`  O ) )
2722, 26syl5eq 2517 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( (
b  o.  M )  |`  O )  =  ( b  |`  O )
)
2821, 27eqtr4d 2508 . . . . . 6  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  a  =  ( ( b  o.  M )  |`  O ) )
29 simpll1 1069 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  S  e.  _V )
30 oveq2 6316 . . . . . . . . . . . 12  |-  ( a  =  S  ->  ( NN0  ^m  a )  =  ( NN0  ^m  S
) )
31 oveq2 6316 . . . . . . . . . . . 12  |-  ( a  =  S  ->  ( ZZ  ^m  a )  =  ( ZZ  ^m  S
) )
3230, 31sseq12d 3447 . . . . . . . . . . 11  |-  ( a  =  S  ->  (
( NN0  ^m  a
)  C_  ( ZZ  ^m  a )  <->  ( NN0  ^m  S )  C_  ( ZZ  ^m  S ) ) )
33 zex 10970 . . . . . . . . . . . 12  |-  ZZ  e.  _V
34 nn0ssz 10982 . . . . . . . . . . . 12  |-  NN0  C_  ZZ
35 mapss 7532 . . . . . . . . . . . 12  |-  ( ( ZZ  e.  _V  /\  NN0  C_  ZZ )  ->  ( NN0  ^m  a )  C_  ( ZZ  ^m  a
) )
3633, 34, 35mp2an 686 . . . . . . . . . . 11  |-  ( NN0 
^m  a )  C_  ( ZZ  ^m  a
)
3732, 36vtoclg 3093 . . . . . . . . . 10  |-  ( S  e.  _V  ->  ( NN0  ^m  S )  C_  ( ZZ  ^m  S ) )
3829, 37syl 17 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( NN0  ^m  S )  C_  ( ZZ  ^m  S ) )
39 simplr 770 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  b  e.  ( NN0  ^m  S ) )
4038, 39sseldd 3419 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  b  e.  ( ZZ  ^m  S ) )
41 coeq1 4997 . . . . . . . . . 10  |-  ( d  =  b  ->  (
d  o.  M )  =  ( b  o.  M ) )
4241fveq2d 5883 . . . . . . . . 9  |-  ( d  =  b  ->  ( P `  ( d  o.  M ) )  =  ( P `  (
b  o.  M ) ) )
43 eqid 2471 . . . . . . . . 9  |-  ( d  e.  ( ZZ  ^m  S )  |->  ( P `
 ( d  o.  M ) ) )  =  ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) )
44 fvex 5889 . . . . . . . . 9  |-  ( P `
 ( b  o.  M ) )  e. 
_V
4542, 43, 44fvmpt 5963 . . . . . . . 8  |-  ( b  e.  ( ZZ  ^m  S )  ->  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  ( P `
 ( b  o.  M ) ) )
4640, 45syl 17 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( (
d  e.  ( ZZ 
^m  S )  |->  ( P `  ( d  o.  M ) ) ) `  b )  =  ( P `  ( b  o.  M
) ) )
47 simprr 774 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( (
d  e.  ( ZZ 
^m  S )  |->  ( P `  ( d  o.  M ) ) ) `  b )  =  0 )
4846, 47eqtr3d 2507 . . . . . 6  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  ( P `  ( b  o.  M
) )  =  0 )
49 reseq1 5105 . . . . . . . . 9  |-  ( c  =  ( b  o.  M )  ->  (
c  |`  O )  =  ( ( b  o.  M )  |`  O ) )
5049eqeq2d 2481 . . . . . . . 8  |-  ( c  =  ( b  o.  M )  ->  (
a  =  ( c  |`  O )  <->  a  =  ( ( b  o.  M )  |`  O ) ) )
51 fveq2 5879 . . . . . . . . 9  |-  ( c  =  ( b  o.  M )  ->  ( P `  c )  =  ( P `  ( b  o.  M
) ) )
5251eqeq1d 2473 . . . . . . . 8  |-  ( c  =  ( b  o.  M )  ->  (
( P `  c
)  =  0  <->  ( P `  ( b  o.  M ) )  =  0 ) )
5350, 52anbi12d 725 . . . . . . 7  |-  ( c  =  ( b  o.  M )  ->  (
( a  =  ( c  |`  O )  /\  ( P `  c
)  =  0 )  <-> 
( a  =  ( ( b  o.  M
)  |`  O )  /\  ( P `  ( b  o.  M ) )  =  0 ) ) )
5453rspcev 3136 . . . . . 6  |-  ( ( ( b  o.  M
)  e.  ( NN0 
^m  T )  /\  ( a  =  ( ( b  o.  M
)  |`  O )  /\  ( P `  ( b  o.  M ) )  =  0 ) )  ->  E. c  e.  ( NN0  ^m  T ) ( a  =  ( c  |`  O )  /\  ( P `  c
)  =  0 ) )
5520, 28, 48, 54syl12anc 1290 . . . . 5  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  /\  (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) )  ->  E. c  e.  ( NN0  ^m  T
) ( a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )
5655ex 441 . . . 4  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  b  e.  ( NN0  ^m  S
) )  ->  (
( a  =  ( b  |`  O )  /\  ( ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) ) `  b )  =  0 )  ->  E. c  e.  ( NN0  ^m  T
) ( a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) ) )
5756rexlimdva 2871 . . 3  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  ( E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 )  ->  E. c  e.  ( NN0  ^m  T ) ( a  =  ( c  |`  O )  /\  ( P `  c
)  =  0 ) ) )
58 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  c  e.  ( NN0  ^m  T
) )
5916adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  T  e.  _V )
60 elmapg 7503 . . . . . . . . . . . . 13  |-  ( ( NN0  e.  _V  /\  T  e.  _V )  ->  ( c  e.  ( NN0  ^m  T )  <-> 
c : T --> NN0 )
)
612, 59, 60sylancr 676 . . . . . . . . . . . 12  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
c  e.  ( NN0 
^m  T )  <->  c : T
--> NN0 ) )
6258, 61mpbid 215 . . . . . . . . . . 11  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  c : T --> NN0 )
6362adantr 472 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  c : T --> NN0 )
649ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  M : T -1-1-> S )
65 f1cnv 5851 . . . . . . . . . . 11  |-  ( M : T -1-1-> S  ->  `' M : ran  M -1-1-onto-> T
)
66 f1of 5828 . . . . . . . . . . 11  |-  ( `' M : ran  M -1-1-onto-> T  ->  `' M : ran  M --> T )
6764, 65, 663syl 18 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  `' M : ran  M --> T )
68 fco 5751 . . . . . . . . . 10  |-  ( ( c : T --> NN0  /\  `' M : ran  M --> T )  ->  (
c  o.  `' M
) : ran  M --> NN0 )
6963, 67, 68syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( c  o.  `' M ) : ran  M --> NN0 )
70 c0ex 9655 . . . . . . . . . . 11  |-  0  e.  _V
7170fconst 5782 . . . . . . . . . 10  |-  ( ( S  \  ran  M
)  X.  { 0 } ) : ( S  \  ran  M
) --> { 0 }
7271a1i 11 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( S 
\  ran  M )  X.  { 0 } ) : ( S  \  ran  M ) --> { 0 } )
73 disjdif 3830 . . . . . . . . . 10  |-  ( ran 
M  i^i  ( S  \  ran  M ) )  =  (/)
7473a1i 11 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ran  M  i^i  ( S  \  ran  M ) )  =  (/) )
75 fun 5758 . . . . . . . . 9  |-  ( ( ( ( c  o.  `' M ) : ran  M --> NN0  /\  ( ( S  \  ran  M
)  X.  { 0 } ) : ( S  \  ran  M
) --> { 0 } )  /\  ( ran 
M  i^i  ( S  \  ran  M ) )  =  (/) )  ->  (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) ) : ( ran  M  u.  ( S  \  ran  M
) ) --> ( NN0 
u.  { 0 } ) )
7669, 72, 74, 75syl21anc 1291 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : ( ran 
M  u.  ( S 
\  ran  M )
) --> ( NN0  u.  { 0 } ) )
77 frn 5747 . . . . . . . . . . . 12  |-  ( M : T --> S  ->  ran  M  C_  S )
789, 10, 773syl 18 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  ran  M  C_  S )
7978ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ran  M  C_  S
)
80 undif 3839 . . . . . . . . . 10  |-  ( ran 
M  C_  S  <->  ( ran  M  u.  ( S  \  ran  M ) )  =  S )
8179, 80sylib 201 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ran  M  u.  ( S  \  ran  M ) )  =  S )
82 0nn0 10908 . . . . . . . . . . . 12  |-  0  e.  NN0
83 snssi 4107 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  { 0 }  C_  NN0 )
8482, 83ax-mp 5 . . . . . . . . . . 11  |-  { 0 }  C_  NN0
85 ssequn2 3598 . . . . . . . . . . 11  |-  ( { 0 }  C_  NN0  <->  ( NN0  u. 
{ 0 } )  =  NN0 )
8684, 85mpbi 213 . . . . . . . . . 10  |-  ( NN0 
u.  { 0 } )  =  NN0
8786a1i 11 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( NN0  u.  { 0 } )  = 
NN0 )
8881, 87feq23d 5734 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) ) : ( ran  M  u.  ( S  \  ran  M
) ) --> ( NN0 
u.  { 0 } )  <->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> NN0 )
)
8976, 88mpbid 215 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> NN0 )
90 elmapg 7503 . . . . . . . . 9  |-  ( ( NN0  e.  _V  /\  S  e.  _V )  ->  ( ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  e.  ( NN0 
^m  S )  <->  ( (
c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) ) : S --> NN0 ) )
912, 3, 90sylancr 676 . . . . . . . 8  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  ( (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  e.  ( NN0  ^m  S
)  <->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> NN0 )
)
9291ad2antrr 740 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) )  e.  ( NN0  ^m  S
)  <->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> NN0 )
)
9389, 92mpbird 240 . . . . . 6  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  e.  ( NN0 
^m  S ) )
94 simprl 772 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  a  =  ( c  |`  O )
)
95 resundir 5125 . . . . . . . . . 10  |-  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  |`  O )  =  ( ( ( c  o.  `' M )  |`  O )  u.  ( ( ( S  \  ran  M
)  X.  { 0 } )  |`  O ) )
96 resco 5346 . . . . . . . . . . . 12  |-  ( ( c  o.  `' M
)  |`  O )  =  ( c  o.  ( `' M  |`  O ) )
97 cnvresid 5663 . . . . . . . . . . . . . . 15  |-  `' (  _I  |`  O )  =  (  _I  |`  O )
98 simpl2 1034 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  M : T -1-1-> S )
99 df-f1 5594 . . . . . . . . . . . . . . . . . 18  |-  ( M : T -1-1-> S  <->  ( M : T --> S  /\  Fun  `' M ) )
10099simprbi 471 . . . . . . . . . . . . . . . . 17  |-  ( M : T -1-1-> S  ->  Fun  `' M )
101 funcnvres 5662 . . . . . . . . . . . . . . . . 17  |-  ( Fun  `' M  ->  `' ( M  |`  O )  =  ( `' M  |`  ( M " O
) ) )
10298, 100, 1013syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  `' ( M  |`  O )  =  ( `' M  |`  ( M " O
) ) )
103 simpl3 1035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( M  |`  O )  =  (  _I  |`  O ) )
104103cnveqd 5015 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  `' ( M  |`  O )  =  `' (  _I  |`  O ) )
105 df-ima 4852 . . . . . . . . . . . . . . . . . 18  |-  ( M
" O )  =  ran  ( M  |`  O )
106103rneqd 5068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ran  ( M  |`  O )  =  ran  (  _I  |`  O ) )
107 rnresi 5187 . . . . . . . . . . . . . . . . . . 19  |-  ran  (  _I  |`  O )  =  O
108106, 107syl6eq 2521 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ran  ( M  |`  O )  =  O )
109105, 108syl5eq 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( M " O )  =  O )
110109reseq2d 5111 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( `' M  |`  ( M
" O ) )  =  ( `' M  |`  O ) )
111102, 104, 1103eqtr3d 2513 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  `' (  _I  |`  O )  =  ( `' M  |`  O ) )
11297, 111syl5reqr 2520 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( `' M  |`  O )  =  (  _I  |`  O ) )
113112coeq2d 5002 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
c  o.  ( `' M  |`  O )
)  =  ( c  o.  (  _I  |`  O ) ) )
114 coires1 5360 . . . . . . . . . . . . 13  |-  ( c  o.  (  _I  |`  O ) )  =  ( c  |`  O )
115113, 114syl6eq 2521 . . . . . . . . . . . 12  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
c  o.  ( `' M  |`  O )
)  =  ( c  |`  O ) )
11696, 115syl5eq 2517 . . . . . . . . . . 11  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
( c  o.  `' M )  |`  O )  =  ( c  |`  O ) )
117 dmres 5131 . . . . . . . . . . . . 13  |-  dom  (
( ( S  \  ran  M )  X.  {
0 } )  |`  O )  =  ( O  i^i  dom  (
( S  \  ran  M )  X.  { 0 } ) )
11870snnz 4081 . . . . . . . . . . . . . . . 16  |-  { 0 }  =/=  (/)
119 dmxp 5059 . . . . . . . . . . . . . . . 16  |-  ( { 0 }  =/=  (/)  ->  dom  ( ( S  \  ran  M )  X.  {
0 } )  =  ( S  \  ran  M ) )
120118, 119ax-mp 5 . . . . . . . . . . . . . . 15  |-  dom  (
( S  \  ran  M )  X.  { 0 } )  =  ( S  \  ran  M
)
121120ineq2i 3622 . . . . . . . . . . . . . 14  |-  ( O  i^i  dom  ( ( S  \  ran  M )  X.  { 0 } ) )  =  ( O  i^i  ( S 
\  ran  M )
)
122 inss1 3643 . . . . . . . . . . . . . . . 16  |-  ( O  i^i  S )  C_  O
123106, 107syl6req 2522 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  O  =  ran  ( M  |`  O ) )
124 resss 5134 . . . . . . . . . . . . . . . . . 18  |-  ( M  |`  O )  C_  M
125 rnss 5069 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  |`  O )  C_  M  ->  ran  ( M  |`  O )  C_  ran  M )
126124, 125mp1i 13 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ran  ( M  |`  O ) 
C_  ran  M )
127123, 126eqsstrd 3452 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  O  C_ 
ran  M )
128122, 127syl5ss 3429 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( O  i^i  S )  C_  ran  M )
129 inssdif0 3746 . . . . . . . . . . . . . . 15  |-  ( ( O  i^i  S ) 
C_  ran  M  <->  ( O  i^i  ( S  \  ran  M ) )  =  (/) )
130128, 129sylib 201 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( O  i^i  ( S  \  ran  M ) )  =  (/) )
131121, 130syl5eq 2517 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  ( O  i^i  dom  ( ( S  \  ran  M )  X.  { 0 } ) )  =  (/) )
132117, 131syl5eq 2517 . . . . . . . . . . . 12  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  dom  ( ( ( S 
\  ran  M )  X.  { 0 } )  |`  O )  =  (/) )
133 relres 5138 . . . . . . . . . . . . 13  |-  Rel  (
( ( S  \  ran  M )  X.  {
0 } )  |`  O )
134 reldm0 5058 . . . . . . . . . . . . 13  |-  ( Rel  ( ( ( S 
\  ran  M )  X.  { 0 } )  |`  O )  ->  (
( ( ( S 
\  ran  M )  X.  { 0 } )  |`  O )  =  (/)  <->  dom  ( ( ( S 
\  ran  M )  X.  { 0 } )  |`  O )  =  (/) ) )
135133, 134ax-mp 5 . . . . . . . . . . . 12  |-  ( ( ( ( S  \  ran  M )  X.  {
0 } )  |`  O )  =  (/)  <->  dom  ( ( ( S 
\  ran  M )  X.  { 0 } )  |`  O )  =  (/) )
136132, 135sylibr 217 . . . . . . . . . . 11  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
( ( S  \  ran  M )  X.  {
0 } )  |`  O )  =  (/) )
137116, 136uneq12d 3580 . . . . . . . . . 10  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
( ( c  o.  `' M )  |`  O )  u.  ( ( ( S  \  ran  M
)  X.  { 0 } )  |`  O ) )  =  ( ( c  |`  O )  u.  (/) ) )
13895, 137syl5eq 2517 . . . . . . . . 9  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  |`  O )  =  ( ( c  |`  O )  u.  (/) ) )
139 un0 3762 . . . . . . . . 9  |-  ( ( c  |`  O )  u.  (/) )  =  ( c  |`  O )
140138, 139syl6req 2522 . . . . . . . 8  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
c  |`  O )  =  ( ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  |`  O )
)
141140adantr 472 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( c  |`  O )  =  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  |`  O ) )
14294, 141eqtrd 2505 . . . . . 6  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  a  =  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  |`  O ) )
143 fss 5749 . . . . . . . . . . . . . 14  |-  ( ( c : T --> NN0  /\  NN0  C_  ZZ )  ->  c : T --> ZZ )
14462, 34, 143sylancl 675 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  c : T --> ZZ )
145144adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  c : T --> ZZ )
146 fco 5751 . . . . . . . . . . . 12  |-  ( ( c : T --> ZZ  /\  `' M : ran  M --> T )  ->  (
c  o.  `' M
) : ran  M --> ZZ )
147145, 67, 146syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( c  o.  `' M ) : ran  M --> ZZ )
148 fun 5758 . . . . . . . . . . 11  |-  ( ( ( ( c  o.  `' M ) : ran  M --> ZZ  /\  ( ( S  \  ran  M
)  X.  { 0 } ) : ( S  \  ran  M
) --> { 0 } )  /\  ( ran 
M  i^i  ( S  \  ran  M ) )  =  (/) )  ->  (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) ) : ( ran  M  u.  ( S  \  ran  M
) ) --> ( ZZ  u.  { 0 } ) )
149147, 72, 74, 148syl21anc 1291 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : ( ran 
M  u.  ( S 
\  ran  M )
) --> ( ZZ  u.  { 0 } ) )
150 0z 10972 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
151 snssi 4107 . . . . . . . . . . . . . 14  |-  ( 0  e.  ZZ  ->  { 0 }  C_  ZZ )
152150, 151ax-mp 5 . . . . . . . . . . . . 13  |-  { 0 }  C_  ZZ
153 ssequn2 3598 . . . . . . . . . . . . 13  |-  ( { 0 }  C_  ZZ  <->  ( ZZ  u.  { 0 } )  =  ZZ )
154152, 153mpbi 213 . . . . . . . . . . . 12  |-  ( ZZ  u.  { 0 } )  =  ZZ
155154a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ZZ  u.  { 0 } )  =  ZZ )
15681, 155feq23d 5734 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) ) : ( ran  M  u.  ( S  \  ran  M
) ) --> ( ZZ  u.  { 0 } )  <->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> ZZ ) )
157149, 156mpbid 215 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> ZZ )
158 elmapg 7503 . . . . . . . . . . 11  |-  ( ( ZZ  e.  _V  /\  S  e.  _V )  ->  ( ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  e.  ( ZZ 
^m  S )  <->  ( (
c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) ) : S --> ZZ ) )
15933, 3, 158sylancr 676 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  ( (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  e.  ( ZZ  ^m  S
)  <->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> ZZ ) )
160159ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) )  e.  ( ZZ  ^m  S
)  <->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) : S --> ZZ ) )
161157, 160mpbird 240 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  e.  ( ZZ 
^m  S ) )
162 coeq1 4997 . . . . . . . . . 10  |-  ( d  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( d  o.  M )  =  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  o.  M ) )
163162fveq2d 5883 . . . . . . . . 9  |-  ( d  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( P `  ( d  o.  M
) )  =  ( P `  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  o.  M ) ) )
164 fvex 5889 . . . . . . . . 9  |-  ( P `
 ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) )  o.  M ) )  e. 
_V
165163, 43, 164fvmpt 5963 . . . . . . . 8  |-  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  e.  ( ZZ  ^m  S
)  ->  ( (
d  e.  ( ZZ 
^m  S )  |->  ( P `  ( d  o.  M ) ) ) `  ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) ) )  =  ( P `  ( ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  o.  M ) ) )
166161, 165syl 17 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( d  e.  ( ZZ  ^m  S )  |->  ( P `
 ( d  o.  M ) ) ) `
 ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) )  =  ( P `  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  o.  M ) ) )
167 coundir 5344 . . . . . . . . 9  |-  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  o.  M )  =  ( ( ( c  o.  `' M )  o.  M
)  u.  ( ( ( S  \  ran  M )  X.  { 0 } )  o.  M
) )
168 coass 5361 . . . . . . . . . . . 12  |-  ( ( c  o.  `' M
)  o.  M )  =  ( c  o.  ( `' M  o.  M ) )
169 f1cocnv1 5857 . . . . . . . . . . . . . 14  |-  ( M : T -1-1-> S  -> 
( `' M  o.  M )  =  (  _I  |`  T )
)
170169coeq2d 5002 . . . . . . . . . . . . 13  |-  ( M : T -1-1-> S  -> 
( c  o.  ( `' M  o.  M
) )  =  ( c  o.  (  _I  |`  T ) ) )
17164, 170syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( c  o.  ( `' M  o.  M ) )  =  ( c  o.  (  _I  |`  T ) ) )
172168, 171syl5eq 2517 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  `' M )  o.  M )  =  ( c  o.  (  _I  |`  T ) ) )
173120ineq1i 3621 . . . . . . . . . . . . . 14  |-  ( dom  ( ( S  \  ran  M )  X.  {
0 } )  i^i 
ran  M )  =  ( ( S  \  ran  M )  i^i  ran  M )
174 incom 3616 . . . . . . . . . . . . . 14  |-  ( ( S  \  ran  M
)  i^i  ran  M )  =  ( ran  M  i^i  ( S  \  ran  M ) )
175173, 174, 733eqtri 2497 . . . . . . . . . . . . 13  |-  ( dom  ( ( S  \  ran  M )  X.  {
0 } )  i^i 
ran  M )  =  (/)
176 coeq0 5351 . . . . . . . . . . . . 13  |-  ( ( ( ( S  \  ran  M )  X.  {
0 } )  o.  M )  =  (/)  <->  ( dom  ( ( S  \  ran  M )  X.  {
0 } )  i^i 
ran  M )  =  (/) )
177175, 176mpbir 214 . . . . . . . . . . . 12  |-  ( ( ( S  \  ran  M )  X.  { 0 } )  o.  M
)  =  (/)
178177a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( S  \  ran  M
)  X.  { 0 } )  o.  M
)  =  (/) )
179172, 178uneq12d 3580 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  o.  M )  u.  ( ( ( S  \  ran  M
)  X.  { 0 } )  o.  M
) )  =  ( ( c  o.  (  _I  |`  T ) )  u.  (/) ) )
180 un0 3762 . . . . . . . . . . 11  |-  ( ( c  o.  (  _I  |`  T ) )  u.  (/) )  =  (
c  o.  (  _I  |`  T ) )
181 fcoi1 5769 . . . . . . . . . . . 12  |-  ( c : T --> NN0  ->  ( c  o.  (  _I  |`  T ) )  =  c )
18263, 181syl 17 . . . . . . . . . . 11  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( c  o.  (  _I  |`  T ) )  =  c )
183180, 182syl5eq 2517 . . . . . . . . . 10  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( c  o.  (  _I  |`  T ) )  u.  (/) )  =  c )
184179, 183eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  o.  M )  u.  ( ( ( S  \  ran  M
)  X.  { 0 } )  o.  M
) )  =  c )
185167, 184syl5eq 2517 . . . . . . . 8  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) )  o.  M )  =  c )
186185fveq2d 5883 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( P `  ( ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  o.  M ) )  =  ( P `
 c ) )
187 simprr 774 . . . . . . 7  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( P `  c )  =  0 )
188166, 186, 1873eqtrd 2509 . . . . . 6  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  ( ( d  e.  ( ZZ  ^m  S )  |->  ( P `
 ( d  o.  M ) ) ) `
 ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) )  =  0 )
189 reseq1 5105 . . . . . . . . 9  |-  ( b  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( b  |`  O )  =  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  |`  O ) )
190189eqeq2d 2481 . . . . . . . 8  |-  ( b  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( a  =  ( b  |`  O )  <->  a  =  ( ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  |`  O )
) )
191 fveq2 5879 . . . . . . . . 9  |-  ( b  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( (
d  e.  ( ZZ 
^m  S )  |->  ( P `  ( d  o.  M ) ) ) `  b )  =  ( ( d  e.  ( ZZ  ^m  S )  |->  ( P `
 ( d  o.  M ) ) ) `
 ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) ) ) )
192191eqeq1d 2473 . . . . . . . 8  |-  ( b  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0  <->  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) ) )  =  0 ) )
193190, 192anbi12d 725 . . . . . . 7  |-  ( b  =  ( ( c  o.  `' M )  u.  ( ( S 
\  ran  M )  X.  { 0 } ) )  ->  ( (
a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 )  <-> 
( a  =  ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) ) )  =  0 ) ) )
194193rspcev 3136 . . . . . 6  |-  ( ( ( ( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) )  e.  ( NN0  ^m  S
)  /\  ( a  =  ( ( ( c  o.  `' M
)  u.  ( ( S  \  ran  M
)  X.  { 0 } ) )  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  (
( c  o.  `' M )  u.  (
( S  \  ran  M )  X.  { 0 } ) ) )  =  0 ) )  ->  E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  ( ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) ) `  b )  =  0 ) )
19593, 142, 188, 194syl12anc 1290 . . . . 5  |-  ( ( ( ( S  e. 
_V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  /\  (
a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) )  ->  E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  ( ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) ) `  b )  =  0 ) )
196195ex 441 . . . 4  |-  ( ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  /\  c  e.  ( NN0  ^m  T
) )  ->  (
( a  =  ( c  |`  O )  /\  ( P `  c
)  =  0 )  ->  E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  ( ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) ) `  b )  =  0 ) ) )
197196rexlimdva 2871 . . 3  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  ( E. c  e.  ( NN0  ^m  T ) ( a  =  ( c  |`  O )  /\  ( P `  c )  =  0 )  ->  E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 ) ) )
19857, 197impbid 195 . 2  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  ( E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  (
( d  e.  ( ZZ  ^m  S ) 
|->  ( P `  (
d  o.  M ) ) ) `  b
)  =  0 )  <->  E. c  e.  ( NN0  ^m  T ) ( a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) ) )
199198abbidv 2589 1  |-  ( ( S  e.  _V  /\  M : T -1-1-> S  /\  ( M  |`  O )  =  (  _I  |`  O ) )  ->  { a  |  E. b  e.  ( NN0  ^m  S ) ( a  =  ( b  |`  O )  /\  ( ( d  e.  ( ZZ  ^m  S
)  |->  ( P `  ( d  o.  M
) ) ) `  b )  =  0 ) }  =  {
a  |  E. c  e.  ( NN0  ^m  T
) ( a  =  ( c  |`  O )  /\  ( P `  c )  =  0 ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   E.wrex 2757   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959    |-> cmpt 4454    _I cid 4749    X. cxp 4837   `'ccnv 4838   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842    o. ccom 4843   Rel wrel 4844   Fun wfun 5583   -->wf 5585   -1-1->wf1 5586   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   0cc0 9557   NN0cn0 10893   ZZcz 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962
This theorem is referenced by:  eldioph2  35675  eldioph2b  35676
  Copyright terms: Public domain W3C validator