Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diophrex Structured version   Unicode version

Theorem diophrex 29023
Description: Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
diophrex  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u    t, S, u
Allowed substitution hints:    M( u, t)

Proof of Theorem diophrex
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2447 . . . . 5  |-  ( a  =  t  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( b  |`  (
1 ... N ) ) ) )
21rexbidv 2734 . . . 4  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  S  t  =  ( b  |`  (
1 ... N ) ) ) )
3 reseq1 5100 . . . . . 6  |-  ( b  =  u  ->  (
b  |`  ( 1 ... N ) )  =  ( u  |`  (
1 ... N ) ) )
43eqeq2d 2452 . . . . 5  |-  ( b  =  u  ->  (
t  =  ( b  |`  ( 1 ... N
) )  <->  t  =  ( u  |`  ( 1 ... N ) ) ) )
54cbvrexv 2946 . . . 4  |-  ( E. b  e.  S  t  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) )
62, 5syl6bb 261 . . 3  |-  ( a  =  t  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) ) )
76cbvabv 2560 . 2  |-  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N ) ) }
8 eldioph3b 29012 . . . . 5  |-  ( S  e.  (Dioph `  M
)  <->  ( M  e. 
NN0  /\  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } ) )
98simprbi 461 . . . 4  |-  ( S  e.  (Dioph `  M
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
1093ad2ant3 1006 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  E. c  e.  (mzPoly `  NN ) S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } )
11 rexeq 2916 . . . . . . . 8  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  ( E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) )  <->  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) ) )
1211abbidv 2555 . . . . . . 7  |-  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  =  { a  |  E. b  e. 
{ d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) ) } )
1312adantl 463 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  =  { a  |  E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) } )
14 eqeq1 2447 . . . . . . . . . . . . 13  |-  ( d  =  b  ->  (
d  =  ( e  |`  ( 1 ... M
) )  <->  b  =  ( e  |`  (
1 ... M ) ) ) )
1514anbi1d 699 . . . . . . . . . . . 12  |-  ( d  =  b  ->  (
( d  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1615rexbidv 2734 . . . . . . . . . . 11  |-  ( d  =  b  ->  ( E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  <->  E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) ) )
1716rexab 3119 . . . . . . . . . 10  |-  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) )  <->  E. b ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
18 r19.41v 2871 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
1918exbii 1639 . . . . . . . . . . 11  |-  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
20 rexcom4 2990 . . . . . . . . . . . 12  |-  ( E. e  e.  ( NN0 
^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
21 anass 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
2221exbii 1639 . . . . . . . . . . . . . . 15  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. b
( b  =  ( e  |`  ( 1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
23 vex 2973 . . . . . . . . . . . . . . . . 17  |-  e  e. 
_V
2423resex 5147 . . . . . . . . . . . . . . . 16  |-  ( e  |`  ( 1 ... M
) )  e.  _V
25 reseq1 5100 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )
2625eqeq2d 2452 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2726anbi2d 698 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( e  |`  ( 1 ... M
) )  ->  (
( ( c `  e )  =  0  /\  a  =  ( b  |`  ( 1 ... N ) ) )  <->  ( ( c `
 e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) ) )
2824, 27ceqsexv 3006 . . . . . . . . . . . . . . 15  |-  ( E. b ( b  =  ( e  |`  (
1 ... M ) )  /\  ( ( c `
 e )  =  0  /\  a  =  ( b  |`  (
1 ... N ) ) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
2922, 28bitri 249 . . . . . . . . . . . . . 14  |-  ( E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  ( (
c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) ) )
30 ancom 448 . . . . . . . . . . . . . . 15  |-  ( ( ( c `  e
)  =  0  /\  a  =  ( ( e  |`  ( 1 ... M ) )  |`  ( 1 ... N
) ) )  <->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) )
31 simpl2 987 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  M  e.  (
ZZ>= `  N ) )
32 fzss2 11494 . . . . . . . . . . . . . . . . . 18  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... M
) )
33 resabs1 5136 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1 ... N ) 
C_  ( 1 ... M )  ->  (
( e  |`  (
1 ... M ) )  |`  ( 1 ... N
) )  =  ( e  |`  ( 1 ... N ) ) )
3431, 32, 333syl 20 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  =  ( e  |`  ( 1 ... N
) ) )
3534eqeq2d 2452 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  <-> 
a  =  ( e  |`  ( 1 ... N
) ) ) )
3635anbi1d 699 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3730, 36syl5bb 257 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( ( ( c `  e )  =  0  /\  a  =  ( ( e  |`  ( 1 ... M
) )  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3829, 37syl5bb 257 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
3938rexbidv 2734 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. e  e.  ( NN0  ^m  NN ) E. b ( ( b  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 )  /\  a  =  ( b  |`  ( 1 ... N
) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4020, 39syl5bbr 259 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b E. e  e.  ( NN0  ^m  NN ) ( ( b  =  ( e  |`  ( 1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4119, 40syl5bbr 259 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b
( E. e  e.  ( NN0  ^m  NN ) ( b  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 )  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4217, 41syl5bb 257 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( E. b  e.  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } a  =  ( b  |`  ( 1 ... N
) )  <->  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) ) )
4342abbidv 2555 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) } )
44 eldioph3 29013 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  (
1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
45443ad2antl1 1145 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. e  e.  ( NN0  ^m  NN ) ( a  =  ( e  |`  ( 1 ... N ) )  /\  ( c `  e )  =  0 ) }  e.  (Dioph `  N ) )
4643, 45eqeltrd 2515 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4746adantr 462 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) } a  =  ( b  |`  (
1 ... N ) ) }  e.  (Dioph `  N ) )
4813, 47eqeltrd 2515 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M ) )  /\  c  e.  (mzPoly `  NN ) )  /\  S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) } )  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
4948ex 434 . . . 4  |-  ( ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  /\  c  e.  (mzPoly `  NN ) )  ->  ( S  =  { d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  ( 1 ... M
) )  /\  (
c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) ) )
5049rexlimdva 2839 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  ( E. c  e.  (mzPoly `  NN ) S  =  {
d  |  E. e  e.  ( NN0  ^m  NN ) ( d  =  ( e  |`  (
1 ... M ) )  /\  ( c `  e )  =  0 ) }  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N ) ) }  e.  (Dioph `  N ) ) )
5110, 50mpd 15 . 2  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { a  |  E. b  e.  S  a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
527, 51syl5eqelr 2526 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  S  e.  (Dioph `  M )
)  ->  { t  |  E. u  e.  S  t  =  ( u  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364   E.wex 1591    e. wcel 1761   {cab 2427   E.wrex 2714    C_ wss 3325    |` cres 4838   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   0cc0 9278   1c1 9279   NNcn 10318   NN0cn0 10575   ZZ>=cuz 10857   ...cfz 11433  mzPolycmzp 28967  Diophcdioph 29002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-hash 12100  df-mzpcl 28968  df-mzp 28969  df-dioph 29003
This theorem is referenced by:  rexrabdioph  29041
  Copyright terms: Public domain W3C validator