Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalc Structured version   Unicode version

Theorem dihvalc 35217
Description: Value of isomorphism H for a lattice  K when  -.  X  .<_  W. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
dihval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihval.d  |-  D  =  ( ( DIsoB `  K
) `  W )
dihval.c  |-  C  =  ( ( DIsoC `  K
) `  W )
dihval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihval.s  |-  S  =  ( LSubSp `  U )
dihval.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihvalc  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  -> 
( I `  X
)  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
Distinct variable groups:    A, q    u, q, K    u, S    W, q, u    X, q, u
Allowed substitution hints:    A( u)    B( u, q)    C( u, q)    D( u, q)    .(+) ( u, q)    S( q)    U( u, q)    H( u, q)    I( u, q)    .\/ ( u, q)    .<_ ( u, q)    ./\ ( u, q)    V( u, q)

Proof of Theorem dihvalc
StepHypRef Expression
1 dihval.b . . . 4  |-  B  =  ( Base `  K
)
2 dihval.l . . . 4  |-  .<_  =  ( le `  K )
3 dihval.j . . . 4  |-  .\/  =  ( join `  K )
4 dihval.m . . . 4  |-  ./\  =  ( meet `  K )
5 dihval.a . . . 4  |-  A  =  ( Atoms `  K )
6 dihval.h . . . 4  |-  H  =  ( LHyp `  K
)
7 dihval.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
8 dihval.d . . . 4  |-  D  =  ( ( DIsoB `  K
) `  W )
9 dihval.c . . . 4  |-  C  =  ( ( DIsoC `  K
) `  W )
10 dihval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 dihval.s . . . 4  |-  S  =  ( LSubSp `  U )
12 dihval.p . . . 4  |-  .(+)  =  (
LSSum `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 35216 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
14 iffalse 3908 . . 3  |-  ( -.  X  .<_  W  ->  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
1513, 14sylan9eq 2515 . 2  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  X  e.  B )  /\  -.  X  .<_  W )  -> 
( I `  X
)  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
1615anasss 647 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  -> 
( I `  X
)  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   ifcif 3900   class class class wbr 4401   ` cfv 5527   iota_crio 6161  (class class class)co 6201   Basecbs 14293   lecple 14365   joincjn 15234   meetcmee 15235   LSSumclsm 16255   LSubSpclss 17137   Atomscatm 33247   LHypclh 33967   DVecHcdvh 35062   DIsoBcdib 35122   DIsoCcdic 35156   DIsoHcdih 35212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-dih 35213
This theorem is referenced by:  dihlsscpre  35218  dihvalcqpre  35219
  Copyright terms: Public domain W3C validator