Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihvalb Structured version   Unicode version

Theorem dihvalb 35188
Description: Value of isomorphism H for a lattice  K when  X  .<_  W. (Contributed by NM, 4-Mar-2014.)
Hypotheses
Ref Expression
dihvalb.b  |-  B  =  ( Base `  K
)
dihvalb.l  |-  .<_  =  ( le `  K )
dihvalb.h  |-  H  =  ( LHyp `  K
)
dihvalb.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihvalb.d  |-  D  =  ( ( DIsoB `  K
) `  W )
Assertion
Ref Expression
dihvalb  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( D `  X ) )

Proof of Theorem dihvalb
Dummy variables  u  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihvalb.b . . . 4  |-  B  =  ( Base `  K
)
2 dihvalb.l . . . 4  |-  .<_  =  ( le `  K )
3 eqid 2451 . . . 4  |-  ( join `  K )  =  (
join `  K )
4 eqid 2451 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
5 eqid 2451 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
6 dihvalb.h . . . 4  |-  H  =  ( LHyp `  K
)
7 dihvalb.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
8 dihvalb.d . . . 4  |-  D  =  ( ( DIsoB `  K
) `  W )
9 eqid 2451 . . . 4  |-  ( (
DIsoC `  K ) `  W )  =  ( ( DIsoC `  K ) `  W )
10 eqid 2451 . . . 4  |-  ( (
DVecH `  K ) `  W )  =  ( ( DVecH `  K ) `  W )
11 eqid 2451 . . . 4  |-  ( LSubSp `  ( ( DVecH `  K
) `  W )
)  =  ( LSubSp `  ( ( DVecH `  K
) `  W )
)
12 eqid 2451 . . . 4  |-  ( LSSum `  ( ( DVecH `  K
) `  W )
)  =  ( LSSum `  ( ( DVecH `  K
) `  W )
)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihval 35183 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  K ) `  W
) ) A. q  e.  ( Atoms `  K )
( ( -.  q  .<_  W  /\  ( q ( join `  K
) ( X (
meet `  K ) W ) )  =  X )  ->  u  =  ( ( ( ( DIsoC `  K ) `  W ) `  q
) ( LSSum `  (
( DVecH `  K ) `  W ) ) ( D `  ( X ( meet `  K
) W ) ) ) ) ) ) )
14 iftrue 3895 . . 3  |-  ( X 
.<_  W  ->  if ( X  .<_  W ,  ( D `  X ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  W ) ) A. q  e.  ( Atoms `  K ) ( ( -.  q  .<_  W  /\  ( q ( join `  K ) ( X ( meet `  K
) W ) )  =  X )  ->  u  =  ( (
( ( DIsoC `  K
) `  W ) `  q ) ( LSSum `  ( ( DVecH `  K
) `  W )
) ( D `  ( X ( meet `  K
) W ) ) ) ) ) )  =  ( D `  X ) )
1513, 14sylan9eq 2512 . 2  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  X  e.  B )  /\  X  .<_  W )  ->  (
I `  X )  =  ( D `  X ) )
1615anasss 647 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( X  e.  B  /\  X  .<_  W ) )  ->  (
I `  X )  =  ( D `  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   ifcif 3889   class class class wbr 4390   ` cfv 5516   iota_crio 6150  (class class class)co 6190   Basecbs 14276   lecple 14347   joincjn 15216   meetcmee 15217   LSSumclsm 16237   LSubSpclss 17119   Atomscatm 33214   LHypclh 33934   DVecHcdvh 35029   DIsoBcdib 35089   DIsoCcdic 35123   DIsoHcdih 35179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-dih 35180
This theorem is referenced by:  dihopelvalbN  35189  dih1dimb  35191  dih2dimb  35195  dih2dimbALTN  35196  dihvalcq2  35198  dihlss  35201  dihord6apre  35207  dihord3  35208  dihord5b  35210  dihord5apre  35213  dih0  35231  dihwN  35240  dihglblem3N  35246  dihmeetlem2N  35250  dih1dimatlem  35280  dihjatcclem4  35372
  Copyright terms: Public domain W3C validator