Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Unicode version

Theorem dihval 30111
Description: Value of isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
dihval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihval.d  |-  D  =  ( ( DIsoB `  K
) `  W )
dihval.c  |-  C  =  ( ( DIsoC `  K
) `  W )
dihval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihval.s  |-  S  =  ( LSubSp `  U )
dihval.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Distinct variable groups:    A, q    u, q, K    u, S    W, q, u    X, q, u
Allowed substitution hints:    A( u)    B( u, q)    C( u, q)    D( u, q)    .(+) ( u, q)    S( q)    U( u, q)    H( u, q)    I( u, q)    .\/ ( u, q)    .<_ ( u, q)    ./\ ( u, q)    V( u, q)

Proof of Theorem dihval
StepHypRef Expression
1 dihval.b . . . 4  |-  B  =  ( Base `  K
)
2 dihval.l . . . 4  |-  .<_  =  ( le `  K )
3 dihval.j . . . 4  |-  .\/  =  ( join `  K )
4 dihval.m . . . 4  |-  ./\  =  ( meet `  K )
5 dihval.a . . . 4  |-  A  =  ( Atoms `  K )
6 dihval.h . . . 4  |-  H  =  ( LHyp `  K
)
7 dihval.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
8 dihval.d . . . 4  |-  D  =  ( ( DIsoB `  K
) `  W )
9 dihval.c . . . 4  |-  C  =  ( ( DIsoC `  K
) `  W )
10 dihval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 dihval.s . . . 4  |-  S  =  ( LSubSp `  U )
12 dihval.p . . . 4  |-  .(+)  =  (
LSSum `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 30110 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) )
1413fveq1d 5379 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( I `  X
)  =  ( ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) `  X
) )
15 breq1 3923 . . . 4  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
16 fveq2 5377 . . . 4  |-  ( x  =  X  ->  ( D `  x )  =  ( D `  X ) )
17 oveq1 5717 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
1817oveq2d 5726 . . . . . . . . 9  |-  ( x  =  X  ->  (
q  .\/  ( x  ./\ 
W ) )  =  ( q  .\/  ( X  ./\  W ) ) )
19 id 21 . . . . . . . . 9  |-  ( x  =  X  ->  x  =  X )
2018, 19eqeq12d 2267 . . . . . . . 8  |-  ( x  =  X  ->  (
( q  .\/  (
x  ./\  W )
)  =  x  <->  ( q  .\/  ( X  ./\  W
) )  =  X ) )
2120anbi2d 687 . . . . . . 7  |-  ( x  =  X  ->  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )
2217fveq2d 5381 . . . . . . . . 9  |-  ( x  =  X  ->  ( D `  ( x  ./\ 
W ) )  =  ( D `  ( X  ./\  W ) ) )
2322oveq2d 5726 . . . . . . . 8  |-  ( x  =  X  ->  (
( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) )  =  ( ( C `  q
)  .(+)  ( D `  ( X  ./\  W ) ) ) )
2423eqeq2d 2264 . . . . . . 7  |-  ( x  =  X  ->  (
u  =  ( ( C `  q ) 
.(+)  ( D `  ( x  ./\  W ) ) )  <->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) )
2521, 24imbi12d 313 . . . . . 6  |-  ( x  =  X  ->  (
( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <-> 
( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2625ralbidv 2527 . . . . 5  |-  ( x  =  X  ->  ( A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2726riotabidv 6192 . . . 4  |-  ( x  =  X  ->  ( iota_ u  e.  S A. q  e.  A  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) )  =  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
2815, 16, 27ifbieq12d 3492 . . 3  |-  ( x  =  X  ->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
29 eqid 2253 . . 3  |-  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )
30 fvex 5391 . . . 4  |-  ( D `
 X )  e. 
_V
31 riotaex 6194 . . . 4  |-  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) )  e. 
_V
3230, 31ifex 3528 . . 3  |-  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )  e.  _V
3328, 29, 32fvmpt 5454 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  (
iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) ) ) `  X )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
3414, 33sylan9eq 2305 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   ifcif 3470   class class class wbr 3920    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   LSSumclsm 14780   LSubSpclss 15524   Atomscatm 28142   LHypclh 28862   DVecHcdvh 29957   DIsoBcdib 30017   DIsoCcdic 30051   DIsoHcdih 30107
This theorem is referenced by:  dihvalc  30112  dihvalb  30116
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-iota 6143  df-riota 6190  df-dih 30108
  Copyright terms: Public domain W3C validator