Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Unicode version

Theorem dihval 34882
Description: Value of isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
dihval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihval.d  |-  D  =  ( ( DIsoB `  K
) `  W )
dihval.c  |-  C  =  ( ( DIsoC `  K
) `  W )
dihval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihval.s  |-  S  =  ( LSubSp `  U )
dihval.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Distinct variable groups:    A, q    u, q, K    u, S    W, q, u    X, q, u
Allowed substitution hints:    A( u)    B( u, q)    C( u, q)    D( u, q)    .(+) ( u, q)    S( q)    U( u, q)    H( u, q)    I( u, q)    .\/ ( u, q)    .<_ ( u, q)    ./\ ( u, q)    V( u, q)

Proof of Theorem dihval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4  |-  B  =  ( Base `  K
)
2 dihval.l . . . 4  |-  .<_  =  ( le `  K )
3 dihval.j . . . 4  |-  .\/  =  ( join `  K )
4 dihval.m . . . 4  |-  ./\  =  ( meet `  K )
5 dihval.a . . . 4  |-  A  =  ( Atoms `  K )
6 dihval.h . . . 4  |-  H  =  ( LHyp `  K
)
7 dihval.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
8 dihval.d . . . 4  |-  D  =  ( ( DIsoB `  K
) `  W )
9 dihval.c . . . 4  |-  C  =  ( ( DIsoC `  K
) `  W )
10 dihval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 dihval.s . . . 4  |-  S  =  ( LSubSp `  U )
12 dihval.p . . . 4  |-  .(+)  =  (
LSSum `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 34881 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) )
1413fveq1d 5698 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( I `  X
)  =  ( ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) `  X
) )
15 breq1 4300 . . . 4  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
16 fveq2 5696 . . . 4  |-  ( x  =  X  ->  ( D `  x )  =  ( D `  X ) )
17 oveq1 6103 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
1817oveq2d 6112 . . . . . . . . 9  |-  ( x  =  X  ->  (
q  .\/  ( x  ./\ 
W ) )  =  ( q  .\/  ( X  ./\  W ) ) )
19 id 22 . . . . . . . . 9  |-  ( x  =  X  ->  x  =  X )
2018, 19eqeq12d 2457 . . . . . . . 8  |-  ( x  =  X  ->  (
( q  .\/  (
x  ./\  W )
)  =  x  <->  ( q  .\/  ( X  ./\  W
) )  =  X ) )
2120anbi2d 703 . . . . . . 7  |-  ( x  =  X  ->  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )
2217fveq2d 5700 . . . . . . . . 9  |-  ( x  =  X  ->  ( D `  ( x  ./\ 
W ) )  =  ( D `  ( X  ./\  W ) ) )
2322oveq2d 6112 . . . . . . . 8  |-  ( x  =  X  ->  (
( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) )  =  ( ( C `  q
)  .(+)  ( D `  ( X  ./\  W ) ) ) )
2423eqeq2d 2454 . . . . . . 7  |-  ( x  =  X  ->  (
u  =  ( ( C `  q ) 
.(+)  ( D `  ( x  ./\  W ) ) )  <->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) )
2521, 24imbi12d 320 . . . . . 6  |-  ( x  =  X  ->  (
( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <-> 
( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2625ralbidv 2740 . . . . 5  |-  ( x  =  X  ->  ( A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2726riotabidv 6059 . . . 4  |-  ( x  =  X  ->  ( iota_ u  e.  S  A. q  e.  A  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) )  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
2815, 16, 27ifbieq12d 3821 . . 3  |-  ( x  =  X  ->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
29 eqid 2443 . . 3  |-  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )
30 fvex 5706 . . . 4  |-  ( D `
 X )  e. 
_V
31 riotaex 6061 . . . 4  |-  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) )  e. 
_V
3230, 31ifex 3863 . . 3  |-  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )  e.  _V
3328, 29, 32fvmpt 5779 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) ) ) `  X )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
3414, 33sylan9eq 2495 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   ifcif 3796   class class class wbr 4297    e. cmpt 4355   ` cfv 5423   iota_crio 6056  (class class class)co 6096   Basecbs 14179   lecple 14250   joincjn 15119   meetcmee 15120   LSSumclsm 16138   LSubSpclss 17018   Atomscatm 32913   LHypclh 33633   DVecHcdvh 34728   DIsoBcdib 34788   DIsoCcdic 34822   DIsoHcdih 34878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-dih 34879
This theorem is referenced by:  dihvalc  34883  dihvalb  34887
  Copyright terms: Public domain W3C validator