Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihval Structured version   Unicode version

Theorem dihval 36047
Description: Value of isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 3-Feb-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
dihval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihval.d  |-  D  =  ( ( DIsoB `  K
) `  W )
dihval.c  |-  C  =  ( ( DIsoC `  K
) `  W )
dihval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihval.s  |-  S  =  ( LSubSp `  U )
dihval.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Distinct variable groups:    A, q    u, q, K    u, S    W, q, u    X, q, u
Allowed substitution hints:    A( u)    B( u, q)    C( u, q)    D( u, q)    .(+) ( u, q)    S( q)    U( u, q)    H( u, q)    I( u, q)    .\/ ( u, q)    .<_ ( u, q)    ./\ ( u, q)    V( u, q)

Proof of Theorem dihval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dihval.b . . . 4  |-  B  =  ( Base `  K
)
2 dihval.l . . . 4  |-  .<_  =  ( le `  K )
3 dihval.j . . . 4  |-  .\/  =  ( join `  K )
4 dihval.m . . . 4  |-  ./\  =  ( meet `  K )
5 dihval.a . . . 4  |-  A  =  ( Atoms `  K )
6 dihval.h . . . 4  |-  H  =  ( LHyp `  K
)
7 dihval.i . . . 4  |-  I  =  ( ( DIsoH `  K
) `  W )
8 dihval.d . . . 4  |-  D  =  ( ( DIsoB `  K
) `  W )
9 dihval.c . . . 4  |-  C  =  ( ( DIsoC `  K
) `  W )
10 dihval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
11 dihval.s . . . 4  |-  S  =  ( LSubSp `  U )
12 dihval.p . . . 4  |-  .(+)  =  (
LSSum `  U )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihfval 36046 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) )
1413fveq1d 5868 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( I `  X
)  =  ( ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) `  X
) )
15 breq1 4450 . . . 4  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
16 fveq2 5866 . . . 4  |-  ( x  =  X  ->  ( D `  x )  =  ( D `  X ) )
17 oveq1 6291 . . . . . . . . . 10  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
1817oveq2d 6300 . . . . . . . . 9  |-  ( x  =  X  ->  (
q  .\/  ( x  ./\ 
W ) )  =  ( q  .\/  ( X  ./\  W ) ) )
19 id 22 . . . . . . . . 9  |-  ( x  =  X  ->  x  =  X )
2018, 19eqeq12d 2489 . . . . . . . 8  |-  ( x  =  X  ->  (
( q  .\/  (
x  ./\  W )
)  =  x  <->  ( q  .\/  ( X  ./\  W
) )  =  X ) )
2120anbi2d 703 . . . . . . 7  |-  ( x  =  X  ->  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X ) ) )
2217fveq2d 5870 . . . . . . . . 9  |-  ( x  =  X  ->  ( D `  ( x  ./\ 
W ) )  =  ( D `  ( X  ./\  W ) ) )
2322oveq2d 6300 . . . . . . . 8  |-  ( x  =  X  ->  (
( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) )  =  ( ( C `  q
)  .(+)  ( D `  ( X  ./\  W ) ) ) )
2423eqeq2d 2481 . . . . . . 7  |-  ( x  =  X  ->  (
u  =  ( ( C `  q ) 
.(+)  ( D `  ( x  ./\  W ) ) )  <->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) )
2521, 24imbi12d 320 . . . . . 6  |-  ( x  =  X  ->  (
( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <-> 
( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2625ralbidv 2903 . . . . 5  |-  ( x  =  X  ->  ( A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) )
2726riotabidv 6247 . . . 4  |-  ( x  =  X  ->  ( iota_ u  e.  S  A. q  e.  A  (
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) )  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )
2815, 16, 27ifbieq12d 3966 . . 3  |-  ( x  =  X  ->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
29 eqid 2467 . . 3  |-  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )
30 fvex 5876 . . . 4  |-  ( D `
 X )  e. 
_V
31 riotaex 6249 . . . 4  |-  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) )  e. 
_V
3230, 31ifex 4008 . . 3  |-  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) )  e.  _V
3328, 29, 32fvmpt 5950 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) ) ) `  X )  =  if ( X  .<_  W , 
( D `  X
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `  ( X  ./\  W ) ) ) ) ) ) )
3414, 33sylan9eq 2528 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  X  e.  B )  ->  (
I `  X )  =  if ( X  .<_  W ,  ( D `  X ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( X  ./\  W ) )  =  X )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( X  ./\  W ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588   iota_crio 6244  (class class class)co 6284   Basecbs 14490   lecple 14562   joincjn 15431   meetcmee 15432   LSSumclsm 16460   LSubSpclss 17378   Atomscatm 34078   LHypclh 34798   DVecHcdvh 35893   DIsoBcdib 35953   DIsoCcdic 35987   DIsoHcdih 36043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-dih 36044
This theorem is referenced by:  dihvalc  36048  dihvalb  36052
  Copyright terms: Public domain W3C validator