Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihrnlss Structured version   Unicode version

Theorem dihrnlss 37420
Description: The isomorphism H maps to subspaces. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dihsslss.h  |-  H  =  ( LHyp `  K
)
dihsslss.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihsslss.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihsslss.s  |-  S  =  ( LSubSp `  U )
Assertion
Ref Expression
dihrnlss  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  X  e.  S )

Proof of Theorem dihrnlss
StepHypRef Expression
1 dihsslss.h . . 3  |-  H  =  ( LHyp `  K
)
2 dihsslss.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 dihsslss.i . . 3  |-  I  =  ( ( DIsoH `  K
) `  W )
4 dihsslss.s . . 3  |-  S  =  ( LSubSp `  U )
51, 2, 3, 4dihsslss 37419 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ran  I  C_  S
)
65sselda 3489 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  ran  I )  ->  X  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   ran crn 4989   ` cfv 5570   LSubSpclss 17776   HLchlt 35491   LHypclh 36124   DVecHcdvh 37221   DIsoHcdih 37371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-riotaBAD 35100
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-undef 6994  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-sca 14803  df-vsca 14804  df-0g 14934  df-preset 15759  df-poset 15777  df-plt 15790  df-lub 15806  df-glb 15807  df-join 15808  df-meet 15809  df-p0 15871  df-p1 15872  df-lat 15878  df-clat 15940  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-grp 16259  df-minusg 16260  df-sbg 16261  df-subg 16400  df-cntz 16557  df-lsm 16858  df-cmn 17002  df-abl 17003  df-mgp 17340  df-ur 17352  df-ring 17398  df-oppr 17470  df-dvdsr 17488  df-unit 17489  df-invr 17519  df-dvr 17530  df-drng 17596  df-lmod 17712  df-lss 17777  df-lsp 17816  df-lvec 17947  df-oposet 35317  df-ol 35319  df-oml 35320  df-covers 35407  df-ats 35408  df-atl 35439  df-cvlat 35463  df-hlat 35492  df-llines 35638  df-lplanes 35639  df-lvols 35640  df-lines 35641  df-psubsp 35643  df-pmap 35644  df-padd 35936  df-lhyp 36128  df-laut 36129  df-ldil 36244  df-ltrn 36245  df-trl 36300  df-tendo 36897  df-edring 36899  df-disoa 37172  df-dvech 37222  df-dib 37282  df-dic 37316  df-dih 37372
This theorem is referenced by:  dihrnss  37421  dochlss  37497  dochord2N  37514  dochord3  37515  dochnoncon  37534  dihjat1lem  37571  dihjat1  37572  dihsmatrn  37579  dochkrsm  37601  dochexmidlem6  37608  hlhilhillem  38106
  Copyright terms: Public domain W3C validator