Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihpN Structured version   Unicode version

Theorem dihpN 34575
Description: The value of isomorphism H at the fiducial atom  P is determined by the vector  <. 0 ,  S >. (the zero translation ltrnid 33373 and a nonzero member of the endomorphism ring). In particular,  S can be replaced with the ring unit  (  _I  |`  T ). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihp.b  |-  B  =  ( Base `  K
)
dihp.h  |-  H  =  ( LHyp `  K
)
dihp.p  |-  P  =  ( ( oc `  K ) `  W
)
dihp.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihp.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihp.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
dihp.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihp.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihp.n  |-  N  =  ( LSpan `  U )
dihp.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dihp.s  |-  ( ph  ->  ( S  e.  E  /\  S  =/=  O
) )
Assertion
Ref Expression
dihpN  |-  ( ph  ->  ( I `  P
)  =  ( N `
 { <. (  _I  |`  B ) ,  S >. } ) )
Distinct variable groups:    B, f    f, H    f, K    P, f    T, f    f, W
Allowed substitution hints:    ph( f)    S( f)    U( f)    E( f)    I( f)    N( f)    O( f)

Proof of Theorem dihpN
Dummy variables  g 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2433 . 2  |-  ( 0g
`  U )  =  ( 0g `  U
)
2 dihp.n . 2  |-  N  =  ( LSpan `  U )
3 eqid 2433 . 2  |-  (LSAtoms `  U
)  =  (LSAtoms `  U
)
4 dihp.h . . 3  |-  H  =  ( LHyp `  K
)
5 dihp.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
6 dihp.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
74, 5, 6dvhlvec 34348 . 2  |-  ( ph  ->  U  e.  LVec )
8 dihp.p . . 3  |-  P  =  ( ( oc `  K ) `  W
)
9 dihp.i . . 3  |-  I  =  ( ( DIsoH `  K
) `  W )
104, 8, 9, 5, 3, 6dihat 34574 . 2  |-  ( ph  ->  ( I `  P
)  e.  (LSAtoms `  U
) )
11 eqid 2433 . . . . . . . . 9  |-  ( le
`  K )  =  ( le `  K
)
12 eqid 2433 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
1311, 12, 4, 8lhpocnel2 33257 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  (
Atoms `  K )  /\  -.  P ( le `  K ) W ) )
146, 13syl 16 . . . . . . 7  |-  ( ph  ->  ( P  e.  (
Atoms `  K )  /\  -.  P ( le `  K ) W ) )
15 dihp.b . . . . . . . 8  |-  B  =  ( Base `  K
)
16 dihp.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
17 eqid 2433 . . . . . . . 8  |-  ( iota_ f  e.  T  ( f `
 P )  =  P )  =  (
iota_ f  e.  T  ( f `  P
)  =  P )
1815, 11, 12, 4, 16, 17ltrniotaidvalN 33821 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  ( Atoms `  K )  /\  -.  P ( le
`  K ) W ) )  ->  ( iota_ f  e.  T  ( f `  P )  =  P )  =  (  _I  |`  B ) )
196, 14, 18syl2anc 654 . . . . . 6  |-  ( ph  ->  ( iota_ f  e.  T  ( f `  P
)  =  P )  =  (  _I  |`  B ) )
2019fveq2d 5683 . . . . 5  |-  ( ph  ->  ( S `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  =  ( S `  (  _I  |`  B ) ) )
21 dihp.s . . . . . . 7  |-  ( ph  ->  ( S  e.  E  /\  S  =/=  O
) )
2221simpld 456 . . . . . 6  |-  ( ph  ->  S  e.  E )
23 dihp.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
2415, 4, 23tendoid 34011 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
256, 22, 24syl2anc 654 . . . . 5  |-  ( ph  ->  ( S `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
2620, 25eqtr2d 2466 . . . 4  |-  ( ph  ->  (  _I  |`  B )  =  ( S `  ( iota_ f  e.  T  ( f `  P
)  =  P ) ) )
27 fvex 5689 . . . . . . 7  |-  ( Base `  K )  e.  _V
2815, 27eqeltri 2503 . . . . . 6  |-  B  e. 
_V
29 resiexg 6503 . . . . . 6  |-  ( B  e.  _V  ->  (  _I  |`  B )  e. 
_V )
3028, 29mp1i 12 . . . . 5  |-  ( ph  ->  (  _I  |`  B )  e.  _V )
31 eqeq1 2439 . . . . . . 7  |-  ( g  =  (  _I  |`  B )  ->  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  <-> 
(  _I  |`  B )  =  ( s `  ( iota_ f  e.  T  ( f `  P
)  =  P ) ) ) )
3231anbi1d 697 . . . . . 6  |-  ( g  =  (  _I  |`  B )  ->  ( ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P
)  =  P ) )  /\  s  e.  E )  <->  ( (  _I  |`  B )  =  ( s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  s  e.  E
) ) )
33 fveq1 5678 . . . . . . . 8  |-  ( s  =  S  ->  (
s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  =  ( S `  ( iota_ f  e.  T  ( f `
 P )  =  P ) ) )
3433eqeq2d 2444 . . . . . . 7  |-  ( s  =  S  ->  (
(  _I  |`  B )  =  ( s `  ( iota_ f  e.  T  ( f `  P
)  =  P ) )  <->  (  _I  |`  B )  =  ( S `  ( iota_ f  e.  T  ( f `  P
)  =  P ) ) ) )
35 eleq1 2493 . . . . . . 7  |-  ( s  =  S  ->  (
s  e.  E  <->  S  e.  E ) )
3634, 35anbi12d 703 . . . . . 6  |-  ( s  =  S  ->  (
( (  _I  |`  B )  =  ( s `  ( iota_ f  e.  T  ( f `  P
)  =  P ) )  /\  s  e.  E )  <->  ( (  _I  |`  B )  =  ( S `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  S  e.  E
) ) )
3732, 36opelopabg 4596 . . . . 5  |-  ( ( (  _I  |`  B )  e.  _V  /\  S  e.  E )  ->  ( <. (  _I  |`  B ) ,  S >.  e.  { <. g ,  s >.  |  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  s  e.  E
) }  <->  ( (  _I  |`  B )  =  ( S `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  S  e.  E
) ) )
3830, 22, 37syl2anc 654 . . . 4  |-  ( ph  ->  ( <. (  _I  |`  B ) ,  S >.  e.  { <. g ,  s >.  |  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  s  e.  E
) }  <->  ( (  _I  |`  B )  =  ( S `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  S  e.  E
) ) )
3926, 22, 38mpbir2and 906 . . 3  |-  ( ph  -> 
<. (  _I  |`  B ) ,  S >.  e.  { <. g ,  s >.  |  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  s  e.  E
) } )
40 eqid 2433 . . . . . 6  |-  ( (
DIsoC `  K ) `  W )  =  ( ( DIsoC `  K ) `  W )
4111, 12, 4, 40, 9dihvalcqat 34478 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  ( Atoms `  K )  /\  -.  P ( le
`  K ) W ) )  ->  (
I `  P )  =  ( ( (
DIsoC `  K ) `  W ) `  P
) )
426, 14, 41syl2anc 654 . . . 4  |-  ( ph  ->  ( I `  P
)  =  ( ( ( DIsoC `  K ) `  W ) `  P
) )
4311, 12, 4, 8, 16, 23, 40dicval 34415 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  ( Atoms `  K )  /\  -.  P ( le
`  K ) W ) )  ->  (
( ( DIsoC `  K
) `  W ) `  P )  =  { <. g ,  s >.  |  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P )  =  P ) )  /\  s  e.  E
) } )
446, 14, 43syl2anc 654 . . . 4  |-  ( ph  ->  ( ( ( DIsoC `  K ) `  W
) `  P )  =  { <. g ,  s
>.  |  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P
)  =  P ) )  /\  s  e.  E ) } )
4542, 44eqtr2d 2466 . . 3  |-  ( ph  ->  { <. g ,  s
>.  |  ( g  =  ( s `  ( iota_ f  e.  T  ( f `  P
)  =  P ) )  /\  s  e.  E ) }  =  ( I `  P
) )
4639, 45eleqtrd 2509 . 2  |-  ( ph  -> 
<. (  _I  |`  B ) ,  S >.  e.  ( I `  P ) )
4721simprd 460 . . 3  |-  ( ph  ->  S  =/=  O )
48 dihp.o . . . . . . . 8  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
4915, 4, 16, 5, 1, 48dvh0g 34350 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( 0g `  U
)  =  <. (  _I  |`  B ) ,  O >. )
506, 49syl 16 . . . . . 6  |-  ( ph  ->  ( 0g `  U
)  =  <. (  _I  |`  B ) ,  O >. )
5150eqeq2d 2444 . . . . 5  |-  ( ph  ->  ( <. (  _I  |`  B ) ,  S >.  =  ( 0g `  U )  <->  <. (  _I  |`  B ) ,  S >.  =  <. (  _I  |`  B ) ,  O >. ) )
5228, 29ax-mp 5 . . . . . . 7  |-  (  _I  |`  B )  e.  _V
53 fvex 5689 . . . . . . . . . 10  |-  ( (
LTrn `  K ) `  W )  e.  _V
5416, 53eqeltri 2503 . . . . . . . . 9  |-  T  e. 
_V
5554mptex 5935 . . . . . . . 8  |-  ( f  e.  T  |->  (  _I  |`  B ) )  e. 
_V
5648, 55eqeltri 2503 . . . . . . 7  |-  O  e. 
_V
5752, 56opth2 4558 . . . . . 6  |-  ( <.
(  _I  |`  B ) ,  S >.  =  <. (  _I  |`  B ) ,  O >.  <->  ( (  _I  |`  B )  =  (  _I  |`  B )  /\  S  =  O
) )
5857simprbi 461 . . . . 5  |-  ( <.
(  _I  |`  B ) ,  S >.  =  <. (  _I  |`  B ) ,  O >.  ->  S  =  O )
5951, 58syl6bi 228 . . . 4  |-  ( ph  ->  ( <. (  _I  |`  B ) ,  S >.  =  ( 0g `  U )  ->  S  =  O ) )
6059necon3d 2636 . . 3  |-  ( ph  ->  ( S  =/=  O  -> 
<. (  _I  |`  B ) ,  S >.  =/=  ( 0g `  U ) ) )
6147, 60mpd 15 . 2  |-  ( ph  -> 
<. (  _I  |`  B ) ,  S >.  =/=  ( 0g `  U ) )
621, 2, 3, 7, 10, 46, 61lsatel 32244 1  |-  ( ph  ->  ( I `  P
)  =  ( N `
 { <. (  _I  |`  B ) ,  S >. } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   _Vcvv 2962   {csn 3865   <.cop 3871   class class class wbr 4280   {copab 4337    e. cmpt 4338    _I cid 4618    |` cres 4829   ` cfv 5406   iota_crio 6038   Basecbs 14157   lecple 14228   occoc 14229   0gc0g 14361   LSpanclspn 16974  LSAtomsclsa 32213   Atomscatm 32502   HLchlt 32589   LHypclh 33222   LTrncltrn 33339   TEndoctendo 33990   DVecHcdvh 34317   DIsoCcdic 34411   DIsoHcdih 34467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-riotaBAD 32198
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-tpos 6734  df-undef 6778  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-n0 10568  df-z 10635  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-0g 14363  df-poset 15099  df-plt 15111  df-lub 15127  df-glb 15128  df-join 15129  df-meet 15130  df-p0 15192  df-p1 15193  df-lat 15199  df-clat 15261  df-mnd 15398  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-subg 15658  df-cntz 15815  df-lsm 16115  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-invr 16698  df-dvr 16709  df-drng 16758  df-lmod 16874  df-lss 16936  df-lsp 16975  df-lvec 17106  df-lsatoms 32215  df-oposet 32415  df-ol 32417  df-oml 32418  df-covers 32505  df-ats 32506  df-atl 32537  df-cvlat 32561  df-hlat 32590  df-llines 32736  df-lplanes 32737  df-lvols 32738  df-lines 32739  df-psubsp 32741  df-pmap 32742  df-padd 33034  df-lhyp 33226  df-laut 33227  df-ldil 33342  df-ltrn 33343  df-trl 33397  df-tendo 33993  df-edring 33995  df-disoa 34268  df-dvech 34318  df-dib 34378  df-dic 34412  df-dih 34468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator