Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihordlem7b Structured version   Unicode version

Theorem dihordlem7b 37043
Description: Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dihordlem8.b  |-  B  =  ( Base `  K
)
dihordlem8.l  |-  .<_  =  ( le `  K )
dihordlem8.a  |-  A  =  ( Atoms `  K )
dihordlem8.h  |-  H  =  ( LHyp `  K
)
dihordlem8.p  |-  P  =  ( ( oc `  K ) `  W
)
dihordlem8.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dihordlem8.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihordlem8.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihordlem8.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihordlem8.s  |-  .+  =  ( +g  `  U )
dihordlem8.g  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
Assertion
Ref Expression
dihordlem7b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( f  =  g  /\  O  =  s ) )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    P, h    R, h    T, h    h, W
Allowed substitution hints:    A( f, g, s)    B( f, g, s)    P( f, g, s)    .+ ( f,
g, h, s)    Q( f, g, h, s)    R( f, g, s)    T( f, g, s)    U( f, g, h, s)    E( f, g, h, s)    G( f, g, h, s)    H( f, g, s)    K( f, g, s)    .<_ ( f, g, s)    O( f, g, h, s)    W( f, g, s)

Proof of Theorem dihordlem7b
StepHypRef Expression
1 dihordlem8.b . . . . 5  |-  B  =  ( Base `  K
)
2 dihordlem8.l . . . . 5  |-  .<_  =  ( le `  K )
3 dihordlem8.a . . . . 5  |-  A  =  ( Atoms `  K )
4 dihordlem8.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 dihordlem8.p . . . . 5  |-  P  =  ( ( oc `  K ) `  W
)
6 dihordlem8.o . . . . 5  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
7 dihordlem8.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
8 dihordlem8.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
9 dihordlem8.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
10 dihordlem8.s . . . . 5  |-  .+  =  ( +g  `  U )
11 dihordlem8.g . . . . 5  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  R )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dihordlem7 37042 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( f  =  ( ( s `  G
)  o.  g )  /\  O  =  s ) )
1312simpld 459 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
f  =  ( ( s `  G )  o.  g ) )
1412simprd 463 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  ->  O  =  s )
1514fveq1d 5874 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( O `  G
)  =  ( s `
 G ) )
16 simp1 996 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
172, 3, 4, 5lhpocnel2 35844 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
18173ad2ant1 1017 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
19 simp2r 1023 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( R  e.  A  /\  -.  R  .<_  W ) )
202, 3, 4, 7, 11ltrniotacl 36406 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
2116, 18, 19, 20syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  ->  G  e.  T )
226, 1tendo02 36614 . . . . . 6  |-  ( G  e.  T  ->  ( O `  G )  =  (  _I  |`  B ) )
2321, 22syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( O `  G
)  =  (  _I  |`  B ) )
2415, 23eqtr3d 2500 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( s `  G
)  =  (  _I  |`  B ) )
2524coeq1d 5174 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( ( s `  G )  o.  g
)  =  ( (  _I  |`  B )  o.  g ) )
26 simp32 1033 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
g  e.  T )
271, 4, 7ltrn1o 35949 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  g : B
-1-1-onto-> B )
2816, 26, 27syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
g : B -1-1-onto-> B )
29 f1of 5822 . . . 4  |-  ( g : B -1-1-onto-> B  ->  g : B
--> B )
30 fcoi2 5766 . . . 4  |-  ( g : B --> B  -> 
( (  _I  |`  B )  o.  g )  =  g )
3128, 29, 303syl 20 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( (  _I  |`  B )  o.  g )  =  g )
3213, 25, 313eqtrd 2502 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
f  =  g )
3332, 14jca 532 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( s  e.  E  /\  g  e.  T  /\  <. f ,  O >.  =  ( <. ( s `  G
) ,  s >.  .+  <. g ,  O >. ) ) )  -> 
( f  =  g  /\  O  =  s ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   <.cop 4038   class class class wbr 4456    |-> cmpt 4515    _I cid 4799    |` cres 5010    o. ccom 5012   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594   iota_crio 6257  (class class class)co 6296   Basecbs 14643   +g cplusg 14711   lecple 14718   occoc 14719   Atomscatm 35089   HLchlt 35176   LHypclh 35809   LTrncltrn 35926   TEndoctendo 36579   DVecHcdvh 36906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34785
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-p1 15796  df-lat 15802  df-clat 15864  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177  df-llines 35323  df-lplanes 35324  df-lvols 35325  df-lines 35326  df-psubsp 35328  df-pmap 35329  df-padd 35621  df-lhyp 35813  df-laut 35814  df-ldil 35929  df-ltrn 35930  df-trl 35985  df-tendo 36582  df-edring 36584  df-dvech 36907
This theorem is referenced by:  dihord10  37051
  Copyright terms: Public domain W3C validator