Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord2cN Structured version   Unicode version

Theorem dihord2cN 34222
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. TODO: needed? shorten other proof with it? (Contributed by NM, 3-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihjust.b  |-  B  =  ( Base `  K
)
dihjust.l  |-  .<_  =  ( le `  K )
dihjust.j  |-  .\/  =  ( join `  K )
dihjust.m  |-  ./\  =  ( meet `  K )
dihjust.a  |-  A  =  ( Atoms `  K )
dihjust.h  |-  H  =  ( LHyp `  K
)
dihjust.i  |-  I  =  ( ( DIsoB `  K
) `  W )
dihjust.J  |-  J  =  ( ( DIsoC `  K
) `  W )
dihjust.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihjust.s  |-  .(+)  =  (
LSSum `  U )
dihord2c.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihord2c.r  |-  R  =  ( ( trL `  K
) `  W )
dihord2c.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
dihord2cN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  <. f ,  O >.  e.  ( I `  ( X  ./\  W ) ) )
Distinct variable groups:    .\/ , f    ./\ , f    .(+) ,
f    f, h, A    f, I    f, J    R, f    B, f, h    f, H, h    f, K, h    .<_ , f, h    T, f, h    f, W, h   
f, X
Allowed substitution hints:    .(+) ( h)    R( h)    U( f, h)    I( h)    J( h)    .\/ ( h)    ./\ ( h)    O( f, h)    X( h)

Proof of Theorem dihord2cN
StepHypRef Expression
1 simp3 999 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  -> 
( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )
2 eqidd 2403 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  O  =  O )
3 simp1 997 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
4 simp1l 1021 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  K  e.  HL )
5 hllat 32362 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  K  e.  Lat )
7 simp2 998 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  X  e.  B )
8 simp1r 1022 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  W  e.  H )
9 dihjust.b . . . . . 6  |-  B  =  ( Base `  K
)
10 dihjust.h . . . . . 6  |-  H  =  ( LHyp `  K
)
119, 10lhpbase 32996 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
128, 11syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  W  e.  B )
13 dihjust.m . . . . 5  |-  ./\  =  ( meet `  K )
149, 13latmcl 15898 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
156, 7, 12, 14syl3anc 1230 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  -> 
( X  ./\  W
)  e.  B )
16 dihjust.l . . . . 5  |-  .<_  =  ( le `  K )
179, 16, 13latmle2 15923 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  .<_  W )
186, 7, 12, 17syl3anc 1230 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  -> 
( X  ./\  W
)  .<_  W )
19 dihord2c.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
20 dihord2c.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
21 dihord2c.o . . . 4  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
22 dihjust.i . . . 4  |-  I  =  ( ( DIsoB `  K
) `  W )
239, 16, 10, 19, 20, 21, 22dibopelval3 34149 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X 
./\  W )  e.  B  /\  ( X 
./\  W )  .<_  W ) )  -> 
( <. f ,  O >.  e.  ( I `  ( X  ./\  W ) )  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  ( X  ./\  W
) )  /\  O  =  O ) ) )
243, 15, 18, 23syl12anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  -> 
( <. f ,  O >.  e.  ( I `  ( X  ./\  W ) )  <->  ( ( f  e.  T  /\  ( R `  f )  .<_  ( X  ./\  W
) )  /\  O  =  O ) ) )
251, 2, 24mpbir2and 923 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  ( f  e.  T  /\  ( R `  f
)  .<_  ( X  ./\  W ) ) )  ->  <. f ,  O >.  e.  ( I `  ( X  ./\  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   <.cop 3977   class class class wbr 4394    |-> cmpt 4452    _I cid 4732    |` cres 4944   ` cfv 5525  (class class class)co 6234   Basecbs 14733   lecple 14808   joincjn 15789   meetcmee 15790   Latclat 15891   LSSumclsm 16870   Atomscatm 32262   HLchlt 32349   LHypclh 32982   LTrncltrn 33099   trLctrl 33157   DVecHcdvh 34079   DIsoBcdib 34139   DIsoCcdic 34173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-lub 15820  df-glb 15821  df-join 15822  df-meet 15823  df-lat 15892  df-atl 32297  df-cvlat 32321  df-hlat 32350  df-lhyp 32986  df-disoa 34030  df-dib 34140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator