Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihord2a Unicode version

Theorem dihord2a 30098
Description: Part of proof after Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dihjust.b  |-  B  =  ( Base `  K
)
dihjust.l  |-  .<_  =  ( le `  K )
dihjust.j  |-  .\/  =  ( join `  K )
dihjust.m  |-  ./\  =  ( meet `  K )
dihjust.a  |-  A  =  ( Atoms `  K )
dihjust.h  |-  H  =  ( LHyp `  K
)
dihjust.i  |-  I  =  ( ( DIsoB `  K
) `  W )
dihjust.J  |-  J  =  ( ( DIsoC `  K
) `  W )
dihjust.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihjust.s  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihord2a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  Q  .<_  ( R  .\/  ( Y 
./\  W ) ) )

Proof of Theorem dihord2a
StepHypRef Expression
1 dihjust.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
2 dihjust.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
3 simp11 990 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3dvhlmod 29989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  U  e.  LMod )
5 eqid 2253 . . . . . . 7  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
65lsssssubg 15550 . . . . . 6  |-  ( U  e.  LMod  ->  ( LSubSp `  U )  C_  (SubGrp `  U ) )
74, 6syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( LSubSp `  U )  C_  (SubGrp `  U ) )
8 simp12 991 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
9 dihjust.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 dihjust.a . . . . . . 7  |-  A  =  ( Atoms `  K )
11 dihjust.J . . . . . . 7  |-  J  =  ( ( DIsoC `  K
) `  W )
129, 10, 1, 2, 11, 5diclss 30072 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( J `  Q
)  e.  ( LSubSp `  U ) )
133, 8, 12syl2anc 645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( J `  Q )  e.  (
LSubSp `  U ) )
147, 13sseldd 3104 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( J `  Q )  e.  (SubGrp `  U ) )
15 simp11l 1071 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  K  e.  HL )
16 hllat 28242 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1715, 16syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  K  e.  Lat )
18 simp2l 986 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  X  e.  B )
19 simp11r 1072 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  W  e.  H )
20 dihjust.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
2120, 1lhpbase 28876 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  B )
2219, 21syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  W  e.  B )
23 dihjust.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
2420, 23latmcl 14001 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
2517, 18, 22, 24syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( X  ./\ 
W )  e.  B
)
2620, 9, 23latmle2 14027 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  .<_  W )
2717, 18, 22, 26syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( X  ./\ 
W )  .<_  W )
28 dihjust.i . . . . . . 7  |-  I  =  ( ( DIsoB `  K
) `  W )
2920, 9, 1, 2, 28, 5diblss 30049 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X 
./\  W )  e.  B  /\  ( X 
./\  W )  .<_  W ) )  -> 
( I `  ( X  ./\  W ) )  e.  ( LSubSp `  U
) )
303, 25, 27, 29syl12anc 1185 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( I `  ( X  ./\  W
) )  e.  (
LSubSp `  U ) )
317, 30sseldd 3104 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( I `  ( X  ./\  W
) )  e.  (SubGrp `  U ) )
32 dihjust.s . . . . 5  |-  .(+)  =  (
LSSum `  U )
3332lsmub1 14802 . . . 4  |-  ( ( ( J `  Q
)  e.  (SubGrp `  U )  /\  (
I `  ( X  ./\ 
W ) )  e.  (SubGrp `  U )
)  ->  ( J `  Q )  C_  (
( J `  Q
)  .(+)  ( I `  ( X  ./\  W ) ) ) )
3414, 31, 33syl2anc 645 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( J `  Q )  C_  (
( J `  Q
)  .(+)  ( I `  ( X  ./\  W ) ) ) )
35 simp33 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( ( J `  Q )  .(+)  ( I `  ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `  ( Y  ./\  W ) ) ) )
3634, 35sstrd 3110 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( J `  Q )  C_  (
( J `  R
)  .(+)  ( I `  ( Y  ./\  W ) ) ) )
37 simp13 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
38 simp2r 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  Y  e.  B )
3920, 23latmcl 14001 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  ./\  W
)  e.  B )
4017, 38, 22, 39syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( Y  ./\ 
W )  e.  B
)
4120, 9, 23latmle2 14027 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  ./\  W
)  .<_  W )
4217, 38, 22, 41syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( Y  ./\ 
W )  .<_  W )
4340, 42jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( ( Y  ./\  W )  e.  B  /\  ( Y 
./\  W )  .<_  W ) )
44 dihjust.j . . . 4  |-  .\/  =  ( join `  K )
4520, 9, 44, 10, 1, 28, 11, 2, 32cdlemn 30091 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( R  e.  A  /\  -.  R  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( ( Y 
./\  W )  e.  B  /\  ( Y 
./\  W )  .<_  W ) ) )  ->  ( Q  .<_  ( R  .\/  ( Y 
./\  W ) )  <-> 
( J `  Q
)  C_  ( ( J `  R )  .(+)  ( I `  ( Y  ./\  W ) ) ) ) )
463, 37, 8, 43, 45syl13anc 1189 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  ( Q  .<_  ( R  .\/  ( Y  ./\  W ) )  <-> 
( J `  Q
)  C_  ( ( J `  R )  .(+)  ( I `  ( Y  ./\  W ) ) ) ) )
4736, 46mpbird 225 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( ( Q  .\/  ( X  ./\  W ) )  =  X  /\  ( R  .\/  ( Y  ./\  W ) )  =  Y  /\  ( ( J `  Q )  .(+)  ( I `
 ( X  ./\  W ) ) )  C_  ( ( J `  R )  .(+)  ( I `
 ( Y  ./\  W ) ) ) ) )  ->  Q  .<_  ( R  .\/  ( Y 
./\  W ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    C_ wss 3078   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995  SubGrpcsubg 14450   LSSumclsm 14780   LModclmod 15462   LSubSpclss 15524   Atomscatm 28142   HLchlt 28229   LHypclh 28862   DVecHcdvh 29957   DIsoBcdib 30017   DIsoCcdic 30051
This theorem is referenced by:  dihord2pre2  30105
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-undef 6182  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-n0 9845  df-z 9904  df-uz 10110  df-fz 10661  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-sca 13098  df-vsca 13099  df-0g 13278  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-mnd 14202  df-submnd 14251  df-grp 14324  df-minusg 14325  df-sbg 14326  df-subg 14453  df-cntz 14628  df-lsm 14782  df-cmn 14926  df-abl 14927  df-mgp 15161  df-ring 15175  df-ur 15177  df-oppr 15240  df-dvdsr 15258  df-unit 15259  df-invr 15289  df-dvr 15300  df-drng 15349  df-lmod 15464  df-lss 15525  df-lsp 15564  df-lvec 15691  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037  df-tendo 29633  df-edring 29635  df-disoa 29908  df-dvech 29958  df-dib 30018  df-dic 30052
  Copyright terms: Public domain W3C validator