Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihoml4 Unicode version

Theorem dihoml4 31860
Description: Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 30435 analog.) (Contributed by NM, 15-Jan-2015.)
Hypotheses
Ref Expression
dihoml4.h  |-  H  =  ( LHyp `  K
)
dihoml4.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihoml4.s  |-  S  =  ( LSubSp `  U )
dihoml4.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
dihoml4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
dihoml4.x  |-  ( ph  ->  X  e.  S )
dihoml4.y  |-  ( ph  ->  Y  e.  S )
dihoml4.c  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
dihoml4.l  |-  ( ph  ->  X  C_  Y )
Assertion
Ref Expression
dihoml4  |-  ( ph  ->  ( (  ._|_  `  (
(  ._|_  `  X )  i^i  Y ) )  i^i 
Y )  =  ( 
._|_  `  (  ._|_  `  X
) ) )

Proof of Theorem dihoml4
StepHypRef Expression
1 dihoml4.k . . . . . 6  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dihoml4.x . . . . . . . 8  |-  ( ph  ->  X  e.  S )
3 eqid 2404 . . . . . . . . 9  |-  ( Base `  U )  =  (
Base `  U )
4 dihoml4.s . . . . . . . . 9  |-  S  =  ( LSubSp `  U )
53, 4lssss 15968 . . . . . . . 8  |-  ( X  e.  S  ->  X  C_  ( Base `  U
) )
62, 5syl 16 . . . . . . 7  |-  ( ph  ->  X  C_  ( Base `  U ) )
7 dihoml4.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
8 eqid 2404 . . . . . . . 8  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
9 dihoml4.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
10 dihoml4.o . . . . . . . 8  |-  ._|_  =  ( ( ocH `  K
) `  W )
117, 8, 9, 3, 10dochcl 31836 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  ( Base `  U ) )  ->  (  ._|_  `  X
)  e.  ran  (
( DIsoH `  K ) `  W ) )
121, 6, 11syl2anc 643 . . . . . 6  |-  ( ph  ->  (  ._|_  `  X )  e.  ran  ( (
DIsoH `  K ) `  W ) )
137, 8, 10dochoc 31850 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  X
)  e.  ran  (
( DIsoH `  K ) `  W ) )  -> 
(  ._|_  `  (  ._|_  `  (  ._|_  `  X ) ) )  =  ( 
._|_  `  X ) )
141, 12, 13syl2anc 643 . . . . 5  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  X ) ) )  =  ( 
._|_  `  X ) )
1514ineq1d 3501 . . . 4  |-  ( ph  ->  ( (  ._|_  `  (  ._|_  `  (  ._|_  `  X
) ) )  i^i 
Y )  =  ( (  ._|_  `  X )  i^i  Y ) )
1615fveq2d 5691 . . 3  |-  ( ph  ->  (  ._|_  `  ( ( 
._|_  `  (  ._|_  `  (  ._|_  `  X ) ) )  i^i  Y ) )  =  (  ._|_  `  ( (  ._|_  `  X
)  i^i  Y )
) )
1716ineq1d 3501 . 2  |-  ( ph  ->  ( (  ._|_  `  (
(  ._|_  `  (  ._|_  `  (  ._|_  `  X ) ) )  i^i  Y
) )  i^i  Y
)  =  ( ( 
._|_  `  ( (  ._|_  `  X )  i^i  Y
) )  i^i  Y
) )
187, 9, 3, 10dochssv 31838 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  ( Base `  U ) )  ->  (  ._|_  `  X
)  C_  ( Base `  U ) )
191, 6, 18syl2anc 643 . . . 4  |-  ( ph  ->  (  ._|_  `  X ) 
C_  ( Base `  U
) )
207, 8, 9, 3, 10dochcl 31836 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  X
)  C_  ( Base `  U ) )  -> 
(  ._|_  `  (  ._|_  `  X ) )  e. 
ran  ( ( DIsoH `  K ) `  W
) )
211, 19, 20syl2anc 643 . . 3  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  X ) )  e. 
ran  ( ( DIsoH `  K ) `  W
) )
22 dihoml4.c . . . 4  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
23 dihoml4.y . . . . . 6  |-  ( ph  ->  Y  e.  S )
243, 4lssss 15968 . . . . . 6  |-  ( Y  e.  S  ->  Y  C_  ( Base `  U
) )
2523, 24syl 16 . . . . 5  |-  ( ph  ->  Y  C_  ( Base `  U ) )
267, 8, 9, 3, 10, 1, 25dochoccl 31852 . . . 4  |-  ( ph  ->  ( Y  e.  ran  ( ( DIsoH `  K
) `  W )  <->  ( 
._|_  `  (  ._|_  `  Y
) )  =  Y ) )
2722, 26mpbird 224 . . 3  |-  ( ph  ->  Y  e.  ran  (
( DIsoH `  K ) `  W ) )
28 dihoml4.l . . . . . 6  |-  ( ph  ->  X  C_  Y )
297, 9, 3, 10dochss 31848 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  ( Base `  U )  /\  X  C_  Y )  -> 
(  ._|_  `  Y )  C_  (  ._|_  `  X ) )
301, 25, 28, 29syl3anc 1184 . . . . 5  |-  ( ph  ->  (  ._|_  `  Y ) 
C_  (  ._|_  `  X
) )
317, 9, 3, 10dochss 31848 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  X
)  C_  ( Base `  U )  /\  (  ._|_  `  Y )  C_  (  ._|_  `  X )
)  ->  (  ._|_  `  (  ._|_  `  X ) )  C_  (  ._|_  `  (  ._|_  `  Y ) ) )
321, 19, 30, 31syl3anc 1184 . . . 4  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  X ) )  C_  (  ._|_  `  (  ._|_  `  Y ) ) )
3332, 22sseqtrd 3344 . . 3  |-  ( ph  ->  (  ._|_  `  (  ._|_  `  X ) )  C_  Y )
347, 8, 10, 1, 21, 27, 33dihoml4c 31859 . 2  |-  ( ph  ->  ( (  ._|_  `  (
(  ._|_  `  (  ._|_  `  (  ._|_  `  X ) ) )  i^i  Y
) )  i^i  Y
)  =  (  ._|_  `  (  ._|_  `  X ) ) )
3517, 34eqtr3d 2438 1  |-  ( ph  ->  ( (  ._|_  `  (
(  ._|_  `  X )  i^i  Y ) )  i^i 
Y )  =  ( 
._|_  `  (  ._|_  `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    i^i cin 3279    C_ wss 3280   ran crn 4838   ` cfv 5413   Basecbs 13424   LSubSpclss 15963   HLchlt 29833   LHypclh 30466   DVecHcdvh 31561   DIsoHcdih 31711   ocHcoch 31830
This theorem is referenced by:  dochexmidlem6  31948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-lsatoms 29459  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring 31239  df-disoa 31512  df-dvech 31562  df-dib 31622  df-dic 31656  df-dih 31712  df-doch 31831
  Copyright terms: Public domain W3C validator