Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem6 Structured version   Unicode version

Theorem dihmeetlem6 35312
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014.)
Hypotheses
Ref Expression
dihmeetlem6.b  |-  B  =  ( Base `  K
)
dihmeetlem6.l  |-  .<_  =  ( le `  K )
dihmeetlem6.h  |-  H  =  ( LHyp `  K
)
dihmeetlem6.j  |-  .\/  =  ( join `  K )
dihmeetlem6.m  |-  ./\  =  ( meet `  K )
dihmeetlem6.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dihmeetlem6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  ( X  ./\  ( Y  .\/  Q ) )  .<_  W )

Proof of Theorem dihmeetlem6
StepHypRef Expression
1 simprlr 762 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  Q  .<_  W )
2 simpl1l 1039 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  K  e.  HL )
3 hllat 33366 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  K  e.  Lat )
5 simpl2 992 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  X  e.  B )
6 simpl3 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Y  e.  B )
7 dihmeetlem6.b . . . . . . 7  |-  B  =  ( Base `  K
)
8 dihmeetlem6.m . . . . . . 7  |-  ./\  =  ( meet `  K )
97, 8latmcl 15344 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
104, 5, 6, 9syl3anc 1219 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( X  ./\ 
Y )  e.  B
)
11 simprll 761 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Q  e.  A )
12 dihmeetlem6.a . . . . . . 7  |-  A  =  ( Atoms `  K )
137, 12atbase 33292 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
1411, 13syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Q  e.  B )
15 simpl1r 1040 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  W  e.  H )
16 dihmeetlem6.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
177, 16lhpbase 34000 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
1815, 17syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  W  e.  B )
19 dihmeetlem6.l . . . . . 6  |-  .<_  =  ( le `  K )
20 dihmeetlem6.j . . . . . 6  |-  .\/  =  ( join `  K )
217, 19, 20latjle12 15354 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Y )  e.  B  /\  Q  e.  B  /\  W  e.  B )
)  ->  ( (
( X  ./\  Y
)  .<_  W  /\  Q  .<_  W )  <->  ( ( X  ./\  Y )  .\/  Q )  .<_  W )
)
224, 10, 14, 18, 21syl13anc 1221 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( (
( X  ./\  Y
)  .<_  W  /\  Q  .<_  W )  <->  ( ( X  ./\  Y )  .\/  Q )  .<_  W )
)
23 simpr 461 . . . 4  |-  ( ( ( X  ./\  Y
)  .<_  W  /\  Q  .<_  W )  ->  Q  .<_  W )
2422, 23syl6bir 229 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( (
( X  ./\  Y
)  .\/  Q )  .<_  W  ->  Q  .<_  W ) )
251, 24mtod 177 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  (
( X  ./\  Y
)  .\/  Q )  .<_  W )
26 simprr 756 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  Q  .<_  X )
277, 19, 20, 8, 12dihmeetlem5 35311 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Q  e.  A  /\  Q  .<_  X ) )  ->  ( X  ./\  ( Y  .\/  Q
) )  =  ( ( X  ./\  Y
)  .\/  Q )
)
282, 5, 6, 11, 26, 27syl32anc 1227 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( X  ./\  ( Y  .\/  Q
) )  =  ( ( X  ./\  Y
)  .\/  Q )
)
2928breq1d 4413 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  ( ( X  ./\  ( Y  .\/  Q ) )  .<_  W  <->  ( ( X  ./\  Y )  .\/  Q )  .<_  W )
)
3025, 29mtbird 301 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  B  /\  Y  e.  B )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  X ) )  ->  -.  ( X  ./\  ( Y  .\/  Q ) )  .<_  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14295   lecple 14367   joincjn 15236   meetcmee 15237   Latclat 15337   Atomscatm 33266   HLchlt 33353   LHypclh 33986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-poset 15238  df-plt 15250  df-lub 15266  df-glb 15267  df-join 15268  df-meet 15269  df-p0 15331  df-lat 15338  df-clat 15400  df-oposet 33179  df-ol 33181  df-oml 33182  df-covers 33269  df-ats 33270  df-atl 33301  df-cvlat 33325  df-hlat 33354  df-psubsp 33505  df-pmap 33506  df-padd 33798  df-lhyp 33990
This theorem is referenced by:  dihjatc1  35314  dihmeetlem10N  35319
  Copyright terms: Public domain W3C validator