Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem13N Unicode version

Theorem dihmeetlem13N 31802
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem13.b  |-  B  =  ( Base `  K
)
dihmeetlem13.l  |-  .<_  =  ( le `  K )
dihmeetlem13.j  |-  .\/  =  ( join `  K )
dihmeetlem13.a  |-  A  =  ( Atoms `  K )
dihmeetlem13.h  |-  H  =  ( LHyp `  K
)
dihmeetlem13.p  |-  P  =  ( ( oc `  K ) `  W
)
dihmeetlem13.t  |-  T  =  ( ( LTrn `  K
) `  W )
dihmeetlem13.e  |-  E  =  ( ( TEndo `  K
) `  W )
dihmeetlem13.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dihmeetlem13.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihmeetlem13.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihmeetlem13.z  |-  .0.  =  ( 0g `  U )
dihmeetlem13.f  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
dihmeetlem13.g  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
Assertion
Ref Expression
dihmeetlem13N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  =  {  .0.  } )
Distinct variable groups:    .<_ , h    A, h    B, h    h, H   
h, K    P, h    Q, h    R, h    T, h   
h, W
Allowed substitution hints:    U( h)    E( h)    F( h)    G( h)    I( h)    .\/ ( h)    O( h)    .0. (
h)

Proof of Theorem dihmeetlem13N
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihmeetlem13.h . . . . . 6  |-  H  =  ( LHyp `  K
)
2 dihmeetlem13.i . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
31, 2dihvalrel 31762 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  Rel  ( I `  Q ) )
433ad2ant1 978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Rel  ( I `  Q
) )
5 relin1 4951 . . . 4  |-  ( Rel  ( I `  Q
)  ->  Rel  ( ( I `  Q )  i^i  ( I `  R ) ) )
64, 5syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Rel  ( ( I `  Q )  i^i  (
I `  R )
) )
7 elin 3490 . . . . . 6  |-  ( <.
f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  <->  ( <. f ,  s >.  e.  ( I `  Q )  /\  <. f ,  s
>.  e.  ( I `  R ) ) )
8 simp1 957 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( K  e.  HL  /\  W  e.  H ) )
9 simp2l 983 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
10 dihmeetlem13.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
11 dihmeetlem13.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
12 dihmeetlem13.p . . . . . . . . 9  |-  P  =  ( ( oc `  K ) `  W
)
13 dihmeetlem13.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
14 dihmeetlem13.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
15 dihmeetlem13.f . . . . . . . . 9  |-  F  =  ( iota_ h  e.  T
( h `  P
)  =  Q )
16 vex 2919 . . . . . . . . 9  |-  f  e. 
_V
17 vex 2919 . . . . . . . . 9  |-  s  e. 
_V
1810, 11, 1, 12, 13, 14, 2, 15, 16, 17dihopelvalcqat 31729 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( <. f ,  s
>.  e.  ( I `  Q )  <->  ( f  =  ( s `  F )  /\  s  e.  E ) ) )
198, 9, 18syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( I `  Q
)  <->  ( f  =  ( s `  F
)  /\  s  e.  E ) ) )
20 simp2r 984 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
21 dihmeetlem13.g . . . . . . . . 9  |-  G  =  ( iota_ h  e.  T
( h `  P
)  =  R )
2210, 11, 1, 12, 13, 14, 2, 21, 16, 17dihopelvalcqat 31729 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( <. f ,  s
>.  e.  ( I `  R )  <->  ( f  =  ( s `  G )  /\  s  e.  E ) ) )
238, 20, 22syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( I `  R
)  <->  ( f  =  ( s `  G
)  /\  s  e.  E ) ) )
2419, 23anbi12d 692 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( <. f ,  s
>.  e.  ( I `  Q )  /\  <. f ,  s >.  e.  ( I `  R ) )  <->  ( ( f  =  ( s `  F )  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) ) )
257, 24syl5bb 249 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  <->  ( ( f  =  ( s `  F )  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) ) )
26 simprll 739 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  f  =  ( s `  F ) )
27 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  Q  =/=  R )
28 fveq1 5686 . . . . . . . . . . . . 13  |-  ( F  =  G  ->  ( F `  P )  =  ( G `  P ) )
29 simpl1 960 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3010, 11, 1, 12lhpocnel2 30501 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3129, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
32 simpl2l 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3310, 11, 1, 13, 15ltrniotaval 31063 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( F `  P )  =  Q )
3429, 31, 32, 33syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( F `  P )  =  Q )
35 simpl2r 1011 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3610, 11, 1, 13, 21ltrniotaval 31063 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( G `  P )  =  R )
3729, 31, 35, 36syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( G `  P )  =  R )
3834, 37eqeq12d 2418 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
( F `  P
)  =  ( G `
 P )  <->  Q  =  R ) )
3928, 38syl5ib 211 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( F  =  G  ->  Q  =  R ) )
4039necon3d 2605 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( Q  =/=  R  ->  F  =/=  G ) )
4127, 40mpd 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  F  =/=  G )
42 simp2ll 1024 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  f  =  ( s `  F
) )
43 simp2rl 1026 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  f  =  ( s `  G
) )
4442, 43eqtr3d 2438 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( s `  F )  =  ( s `  G ) )
45 simp11 987 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( K  e.  HL  /\  W  e.  H ) )
46 simp2rr 1027 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  s  e.  E )
47 simp3 959 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  s  =/=  O )
4845, 30syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
49 simp12l 1070 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5010, 11, 1, 13, 15ltrniotacl 31061 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  F  e.  T )
5145, 48, 49, 50syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  F  e.  T )
52 simp12r 1071 . . . . . . . . . . . . . . 15  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5310, 11, 1, 13, 21ltrniotacl 31061 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  G  e.  T )
5445, 48, 52, 53syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  G  e.  T )
55 dihmeetlem13.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  K
)
56 dihmeetlem13.o . . . . . . . . . . . . . . 15  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
5755, 1, 13, 14, 56tendospcanN 31506 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  s  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( (
s `  F )  =  ( s `  G )  <->  F  =  G ) )
5845, 46, 47, 51, 54, 57syl122anc 1193 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  ( (
s `  F )  =  ( s `  G )  <->  F  =  G ) )
5944, 58mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  /\  s  =/=  O )  ->  F  =  G )
60593expia 1155 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
s  =/=  O  ->  F  =  G )
)
6160necon1d 2636 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( F  =/=  G  ->  s  =  O ) )
6241, 61mpd 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  s  =  O )
6362fveq1d 5689 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
s `  F )  =  ( O `  F ) )
6429, 31, 32, 50syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  F  e.  T )
6556, 55tendo02 31269 . . . . . . . . 9  |-  ( F  e.  T  ->  ( O `  F )  =  (  _I  |`  B ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  ( O `  F )  =  (  _I  |`  B ) )
6726, 63, 663eqtrd 2440 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  f  =  (  _I  |`  B ) )
6867, 62jca 519 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/=  R )  /\  ( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
) )  ->  (
f  =  (  _I  |`  B )  /\  s  =  O ) )
6968ex 424 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( ( f  =  ( s `  F
)  /\  s  e.  E )  /\  (
f  =  ( s `
 G )  /\  s  e.  E )
)  ->  ( f  =  (  _I  |`  B )  /\  s  =  O ) ) )
7025, 69sylbid 207 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  ->  ( f  =  (  _I  |`  B )  /\  s  =  O ) ) )
71 dihmeetlem13.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
72 dihmeetlem13.z . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
7355, 1, 13, 71, 72, 56dvh0g 31594 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  =  <. (  _I  |`  B ) ,  O >. )
74733ad2ant1 978 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  .0.  =  <. (  _I  |`  B ) ,  O >. )
7574sneqd 3787 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  {  .0.  }  =  { <. (  _I  |`  B ) ,  O >. } )
7675eleq2d 2471 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  {  .0.  }  <->  <. f ,  s >.  e.  { <. (  _I  |`  B ) ,  O >. } ) )
77 opex 4387 . . . . . . 7  |-  <. f ,  s >.  e.  _V
7877elsnc 3797 . . . . . 6  |-  ( <.
f ,  s >.  e.  { <. (  _I  |`  B ) ,  O >. }  <->  <. f ,  s >.  =  <. (  _I  |`  B ) ,  O >. )
7916, 17opth 4395 . . . . . 6  |-  ( <.
f ,  s >.  =  <. (  _I  |`  B ) ,  O >.  <->  ( f  =  (  _I  |`  B )  /\  s  =  O ) )
8078, 79bitr2i 242 . . . . 5  |-  ( ( f  =  (  _I  |`  B )  /\  s  =  O )  <->  <. f ,  s >.  e.  { <. (  _I  |`  B ) ,  O >. } )
8176, 80syl6rbbr 256 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( f  =  (  _I  |`  B )  /\  s  =  O
)  <->  <. f ,  s
>.  e.  {  .0.  }
) )
8270, 81sylibd 206 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  ( <. f ,  s >.  e.  ( ( I `  Q )  i^i  (
I `  R )
)  ->  <. f ,  s >.  e.  {  .0.  } ) )
836, 82relssdv 4927 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  C_  {  .0.  } )
841, 71, 8dvhlmod 31593 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  U  e.  LMod )
85 simp2ll 1024 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Q  e.  A )
8655, 11atbase 29772 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
8785, 86syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  Q  e.  B )
88 eqid 2404 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
8955, 1, 2, 71, 88dihlss 31733 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  B
)  ->  ( I `  Q )  e.  (
LSubSp `  U ) )
908, 87, 89syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
I `  Q )  e.  ( LSubSp `  U )
)
91 simp2rl 1026 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  R  e.  A )
9255, 11atbase 29772 . . . . . 6  |-  ( R  e.  A  ->  R  e.  B )
9391, 92syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  R  e.  B )
9455, 1, 2, 71, 88dihlss 31733 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  R  e.  B
)  ->  ( I `  R )  e.  (
LSubSp `  U ) )
958, 93, 94syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
I `  R )  e.  ( LSubSp `  U )
)
9688lssincl 15996 . . . 4  |-  ( ( U  e.  LMod  /\  (
I `  Q )  e.  ( LSubSp `  U )  /\  ( I `  R
)  e.  ( LSubSp `  U ) )  -> 
( ( I `  Q )  i^i  (
I `  R )
)  e.  ( LSubSp `  U ) )
9784, 90, 95, 96syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  e.  ( LSubSp `  U )
)
9872, 88lss0ss 15980 . . 3  |-  ( ( U  e.  LMod  /\  (
( I `  Q
)  i^i  ( I `  R ) )  e.  ( LSubSp `  U )
)  ->  {  .0.  } 
C_  ( ( I `
 Q )  i^i  ( I `  R
) ) )
9984, 97, 98syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  {  .0.  } 
C_  ( ( I `
 Q )  i^i  ( I `  R
) ) )
10083, 99eqssd 3325 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  Q  =/= 
R )  ->  (
( I `  Q
)  i^i  ( I `  R ) )  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567    i^i cin 3279    C_ wss 3280   {csn 3774   <.cop 3777   class class class wbr 4172    e. cmpt 4226    _I cid 4453    |` cres 4839   Rel wrel 4842   ` cfv 5413   iota_crio 6501   Basecbs 13424   lecple 13491   occoc 13492   0gc0g 13678   joincjn 14356   LModclmod 15905   LSubSpclss 15963   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   DVecHcdvh 31561   DIsoHcdih 31711
This theorem is referenced by:  dihmeetlem15N  31804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring 31239  df-disoa 31512  df-dvech 31562  df-dib 31622  df-dic 31656  df-dih 31712
  Copyright terms: Public domain W3C validator