Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem5 Structured version   Visualization version   Unicode version

Theorem dihglblem5 34866
Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
dihglblem5.b  |-  B  =  ( Base `  K
)
dihglblem5.g  |-  G  =  ( glb `  K
)
dihglblem5.h  |-  H  =  ( LHyp `  K
)
dihglblem5.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihglblem5.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihglblem5.s  |-  S  =  ( LSubSp `  U )
Assertion
Ref Expression
dihglblem5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  |^|_ x  e.  T  ( I `  x
)  e.  S )
Distinct variable groups:    x, B    x, H    x, K    x, S    x, T    x, W
Allowed substitution hints:    U( x)    G( x)    I( x)

Proof of Theorem dihglblem5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvex 5875 . . 3  |-  ( I `
 x )  e. 
_V
21dfiin2 4313 . 2  |-  |^|_ x  e.  T  ( I `  x )  =  |^| { y  |  E. x  e.  T  y  =  ( I `  x
) }
3 dihglblem5.h . . . 4  |-  H  =  ( LHyp `  K
)
4 dihglblem5.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
5 simpl 459 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
63, 4, 5dvhlmod 34678 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  U  e.  LMod )
7 simpll 760 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  /\  x  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simplrl 770 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  /\  x  e.  T )  ->  T  C_  B )
9 simpr 463 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  /\  x  e.  T )  ->  x  e.  T )
108, 9sseldd 3433 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  /\  x  e.  T )  ->  x  e.  B )
11 dihglblem5.b . . . . . . 7  |-  B  =  ( Base `  K
)
12 dihglblem5.i . . . . . . 7  |-  I  =  ( ( DIsoH `  K
) `  W )
13 dihglblem5.s . . . . . . 7  |-  S  =  ( LSubSp `  U )
1411, 3, 12, 4, 13dihlss 34818 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  B
)  ->  ( I `  x )  e.  S
)
157, 10, 14syl2anc 667 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  /\  x  e.  T )  ->  ( I `  x
)  e.  S )
1615ralrimiva 2802 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  A. x  e.  T  ( I `  x
)  e.  S )
17 uniiunlem 3517 . . . . 5  |-  ( A. x  e.  T  (
I `  x )  e.  S  ->  ( A. x  e.  T  (
I `  x )  e.  S  <->  { y  |  E. x  e.  T  y  =  ( I `  x ) }  C_  S ) )
1816, 17syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  ( A. x  e.  T  ( I `  x )  e.  S  <->  { y  |  E. x  e.  T  y  =  ( I `  x
) }  C_  S
) )
1916, 18mpbid 214 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  { y  |  E. x  e.  T  y  =  ( I `  x ) }  C_  S )
20 simprr 766 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  T  =/=  (/) )
21 n0 3741 . . . . 5  |-  ( T  =/=  (/)  <->  E. x  x  e.  T )
2220, 21sylib 200 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  E. x  x  e.  T )
23 nfre1 2848 . . . . . . 7  |-  F/ x E. x  e.  T  y  =  ( I `  x )
2423nfab 2596 . . . . . 6  |-  F/_ x { y  |  E. x  e.  T  y  =  ( I `  x ) }
25 nfcv 2592 . . . . . 6  |-  F/_ x (/)
2624, 25nfne 2723 . . . . 5  |-  F/ x { y  |  E. x  e.  T  y  =  ( I `  x ) }  =/=  (/)
271elabrex 6148 . . . . . 6  |-  ( x  e.  T  ->  (
I `  x )  e.  { y  |  E. x  e.  T  y  =  ( I `  x ) } )
28 ne0i 3737 . . . . . 6  |-  ( ( I `  x )  e.  { y  |  E. x  e.  T  y  =  ( I `  x ) }  ->  { y  |  E. x  e.  T  y  =  ( I `  x
) }  =/=  (/) )
2927, 28syl 17 . . . . 5  |-  ( x  e.  T  ->  { y  |  E. x  e.  T  y  =  ( I `  x ) }  =/=  (/) )
3026, 29exlimi 1995 . . . 4  |-  ( E. x  x  e.  T  ->  { y  |  E. x  e.  T  y  =  ( I `  x ) }  =/=  (/) )
3122, 30syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  { y  |  E. x  e.  T  y  =  ( I `  x ) }  =/=  (/) )
3213lssintcl 18187 . . 3  |-  ( ( U  e.  LMod  /\  {
y  |  E. x  e.  T  y  =  ( I `  x
) }  C_  S  /\  { y  |  E. x  e.  T  y  =  ( I `  x ) }  =/=  (/) )  ->  |^| { y  |  E. x  e.  T  y  =  ( I `  x ) }  e.  S )
336, 19, 31, 32syl3anc 1268 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  |^| { y  |  E. x  e.  T  y  =  ( I `  x ) }  e.  S )
342, 33syl5eqel 2533 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  B  /\  T  =/=  (/) ) )  ->  |^|_ x  e.  T  ( I `  x
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887   {cab 2437    =/= wne 2622   A.wral 2737   E.wrex 2738    C_ wss 3404   (/)c0 3731   |^|cint 4234   |^|_ciin 4279   ` cfv 5582   Basecbs 15121   glbcglb 16188   LModclmod 18091   LSubSpclss 18155   HLchlt 32916   LHypclh 33549   DVecHcdvh 34646   DIsoHcdih 34796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-riotaBAD 32525
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-tpos 6973  df-undef 7020  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-sca 15206  df-vsca 15207  df-0g 15340  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-sbg 16675  df-subg 16814  df-cntz 16971  df-lsm 17288  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-oppr 17851  df-dvdsr 17869  df-unit 17870  df-invr 17900  df-dvr 17911  df-drng 17977  df-lmod 18093  df-lss 18156  df-lsp 18195  df-lvec 18326  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-llines 33063  df-lplanes 33064  df-lvols 33065  df-lines 33066  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-lhyp 33553  df-laut 33554  df-ldil 33669  df-ltrn 33670  df-trl 33725  df-tendo 34322  df-edring 34324  df-disoa 34597  df-dvech 34647  df-dib 34707  df-dic 34741  df-dih 34797
This theorem is referenced by:  dihglblem6  34908
  Copyright terms: Public domain W3C validator