Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem4 Structured version   Unicode version

Theorem dihglblem4 37437
Description: Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014.)
Hypotheses
Ref Expression
dihglblem.b  |-  B  =  ( Base `  K
)
dihglblem.l  |-  .<_  =  ( le `  K )
dihglblem.m  |-  ./\  =  ( meet `  K )
dihglblem.g  |-  G  =  ( glb `  K
)
dihglblem.h  |-  H  =  ( LHyp `  K
)
dihglblem.t  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
dihglblem.i  |-  J  =  ( ( DIsoB `  K
) `  W )
dihglblem.ih  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihglblem4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  ( I `  ( G `  S ) )  C_  |^|_ x  e.  S  ( I `  x ) )
Distinct variable groups:    x, u, v,  ./\    x,  .<_    x, B, u    x, G    x, H    x, K    x, S, u, v    x, T    x, W, u, v    u,  .<_ , v   
v, B    u, G, v    u, H, v    u, K, v    x, I
Allowed substitution hints:    T( v, u)    I( v, u)    J( x, v, u)

Proof of Theorem dihglblem4
StepHypRef Expression
1 hlclat 35496 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
21ad3antrrr 727 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  K  e.  CLat )
3 simplrl 759 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  S  C_  B )
4 simpr 459 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  S )
5 dihglblem.b . . . . . 6  |-  B  =  ( Base `  K
)
6 dihglblem.l . . . . . 6  |-  .<_  =  ( le `  K )
7 dihglblem.g . . . . . 6  |-  G  =  ( glb `  K
)
85, 6, 7clatglble 15872 . . . . 5  |-  ( ( K  e.  CLat  /\  S  C_  B  /\  x  e.  S )  ->  ( G `  S )  .<_  x )
92, 3, 4, 8syl3anc 1226 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
)  .<_  x )
10 simpll 751 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
115, 7clatglbcl 15861 . . . . . 6  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )
122, 3, 11syl2anc 659 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( G `  S
)  e.  B )
133, 4sseldd 3418 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  x  e.  B )
14 dihglblem.h . . . . . 6  |-  H  =  ( LHyp `  K
)
15 dihglblem.ih . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
165, 6, 14, 15dihord 37404 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G `  S )  e.  B  /\  x  e.  B
)  ->  ( (
I `  ( G `  S ) )  C_  ( I `  x
)  <->  ( G `  S )  .<_  x ) )
1710, 12, 13, 16syl3anc 1226 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( ( I `  ( G `  S ) )  C_  ( I `  x )  <->  ( G `  S )  .<_  x ) )
189, 17mpbird 232 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S )  ->  ( I `  ( G `  S )
)  C_  ( I `  x ) )
1918ralrimiva 2796 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  A. x  e.  S  ( I `  ( G `  S )
)  C_  ( I `  x ) )
20 ssiin 4293 . 2  |-  ( ( I `  ( G `
 S ) ) 
C_  |^|_ x  e.  S  ( I `  x
)  <->  A. x  e.  S  ( I `  ( G `  S )
)  C_  ( I `  x ) )
2119, 20sylibr 212 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  ( I `  ( G `  S ) )  C_  |^|_ x  e.  S  ( I `  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733   {crab 2736    C_ wss 3389   (/)c0 3711   |^|_ciin 4244   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   glbcglb 15689   meetcmee 15691   CLatccla 15854   HLchlt 35488   LHypclh 36121   DIsoBcdib 37278   DIsoHcdih 37368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-riotaBAD 35097
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-tpos 6873  df-undef 6920  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-n0 10713  df-z 10782  df-uz 11002  df-fz 11594  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-sca 14718  df-vsca 14719  df-0g 14849  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-p1 15787  df-lat 15793  df-clat 15855  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-grp 16174  df-minusg 16175  df-sbg 16176  df-subg 16315  df-cntz 16472  df-lsm 16773  df-cmn 16917  df-abl 16918  df-mgp 17255  df-ur 17267  df-ring 17313  df-oppr 17385  df-dvdsr 17403  df-unit 17404  df-invr 17434  df-dvr 17445  df-drng 17511  df-lmod 17627  df-lss 17692  df-lsp 17731  df-lvec 17862  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35635  df-lplanes 35636  df-lvols 35637  df-lines 35638  df-psubsp 35640  df-pmap 35641  df-padd 35933  df-lhyp 36125  df-laut 36126  df-ldil 36241  df-ltrn 36242  df-trl 36297  df-tendo 36894  df-edring 36896  df-disoa 37169  df-dvech 37219  df-dib 37279  df-dic 37313  df-dih 37369
This theorem is referenced by:  dihglblem6  37480
  Copyright terms: Public domain W3C validator