Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3aN Structured version   Unicode version

Theorem dihglblem3aN 35280
Description: Isomorphism H of a lattice glb. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b  |-  B  =  ( Base `  K
)
dihglblem.l  |-  .<_  =  ( le `  K )
dihglblem.m  |-  ./\  =  ( meet `  K )
dihglblem.g  |-  G  =  ( glb `  K
)
dihglblem.h  |-  H  =  ( LHyp `  K
)
dihglblem.t  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
dihglblem.i  |-  J  =  ( ( DIsoB `  K
) `  W )
dihglblem.ih  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihglblem3aN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Distinct variable groups:    x, u, v,  ./\    x,  .<_    x, B, u    x, G    x, H    x, K    x, S, u, v    x, T    x, W, u, v    u,  .<_ , v   
v, B    u, G, v    u, H, v    u, K, v
Allowed substitution hints:    T( v, u)    I( x, v, u)    J( x, v, u)

Proof of Theorem dihglblem3aN
StepHypRef Expression
1 dihglblem.b . . . . 5  |-  B  =  ( Base `  K
)
2 dihglblem.l . . . . 5  |-  .<_  =  ( le `  K )
3 dihglblem.m . . . . 5  |-  ./\  =  ( meet `  K )
4 dihglblem.g . . . . 5  |-  G  =  ( glb `  K
)
5 dihglblem.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 dihglblem.t . . . . 5  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
71, 2, 3, 4, 5, 6dihglblem2N 35278 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  B  /\  ( G `  S
)  .<_  W )  -> 
( G `  S
)  =  ( G `
 T ) )
873adant2r 1214 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  =  ( G `  T ) )
98fveq2d 5804 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( I `  ( G `  T )
) )
10 dihglblem.i . . 3  |-  J  =  ( ( DIsoB `  K
) `  W )
11 dihglblem.ih . . 3  |-  I  =  ( ( DIsoH `  K
) `  W )
121, 2, 3, 4, 5, 6, 10, 11dihglblem3N 35279 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
139, 12eqtrd 2495 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   E.wrex 2800   {crab 2803    C_ wss 3437   (/)c0 3746   |^|_ciin 4281   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   Basecbs 14293   lecple 14365   glbcglb 15233   meetcmee 15235   HLchlt 33334   LHypclh 33967   DIsoBcdib 35122   DIsoHcdih 35212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-iin 4283  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-map 7327  df-poset 15236  df-plt 15248  df-lub 15264  df-glb 15265  df-join 15266  df-meet 15267  df-p0 15329  df-p1 15330  df-lat 15336  df-clat 15398  df-oposet 33160  df-ol 33162  df-oml 33163  df-covers 33250  df-ats 33251  df-atl 33282  df-cvlat 33306  df-hlat 33335  df-lhyp 33971  df-laut 33972  df-ldil 34087  df-ltrn 34088  df-trl 34142  df-disoa 35013  df-dib 35123  df-dih 35213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator