Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem3N Structured version   Unicode version

Theorem dihglblem3N 36110
Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b  |-  B  =  ( Base `  K
)
dihglblem.l  |-  .<_  =  ( le `  K )
dihglblem.m  |-  ./\  =  ( meet `  K )
dihglblem.g  |-  G  =  ( glb `  K
)
dihglblem.h  |-  H  =  ( LHyp `  K
)
dihglblem.t  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
dihglblem.i  |-  J  =  ( ( DIsoB `  K
) `  W )
dihglblem.ih  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihglblem3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Distinct variable groups:    x, u, v,  ./\    x,  .<_    x, B, u    x, G    x, H    x, K    x, S, u, v    x, T    x, W, u, v    u,  .<_ , v   
v, B    u, G, v    u, H, v    u, K, v
Allowed substitution hints:    T( v, u)    I( x, v, u)    J( x, v, u)

Proof of Theorem dihglblem3N
StepHypRef Expression
1 simp1 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 dihglblem.t . . . . . 6  |-  T  =  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }
3 simp11l 1107 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  K  e.  HL )
4 hllat 34178 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  K  e.  Lat )
6 simp12l 1109 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  S  C_  B )
7 simp3 998 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  v  e.  S )
86, 7sseldd 3505 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  v  e.  B )
9 simp11r 1108 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  W  e.  H )
10 dihglblem.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  K
)
11 dihglblem.h . . . . . . . . . . . . 13  |-  H  =  ( LHyp `  K
)
1210, 11lhpbase 34812 . . . . . . . . . . . 12  |-  ( W  e.  H  ->  W  e.  B )
139, 12syl 16 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  W  e.  B )
14 dihglblem.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
15 dihglblem.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
1610, 14, 15latmle2 15564 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  v  e.  B  /\  W  e.  B )  ->  ( v  ./\  W
)  .<_  W )
175, 8, 13, 16syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B  /\  v  e.  S )  ->  (
v  ./\  W )  .<_  W )
18173expia 1198 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  (
v  e.  S  -> 
( v  ./\  W
)  .<_  W ) )
19 breq1 4450 . . . . . . . . . 10  |-  ( u  =  ( v  ./\  W )  ->  ( u  .<_  W  <->  ( v  ./\  W )  .<_  W )
)
2019biimprcd 225 . . . . . . . . 9  |-  ( ( v  ./\  W )  .<_  W  ->  ( u  =  ( v  ./\  W )  ->  u  .<_  W ) )
2118, 20syl6 33 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  (
v  e.  S  -> 
( u  =  ( v  ./\  W )  ->  u  .<_  W )
) )
2221rexlimdv 2953 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  u  e.  B )  ->  ( E. v  e.  S  u  =  ( v  ./\  W )  ->  u  .<_  W ) )
2322ss2rabdv 3581 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  { u  e.  B  |  E. v  e.  S  u  =  ( v  ./\  W ) }  C_  { u  e.  B  |  u  .<_  W } )
242, 23syl5eqss 3548 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  C_ 
{ u  e.  B  |  u  .<_  W }
)
25 dihglblem.i . . . . . . 7  |-  J  =  ( ( DIsoB `  K
) `  W )
2610, 14, 11, 25dibdmN 35972 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  dom  J  =  {
u  e.  B  |  u  .<_  W } )
27263ad2ant1 1017 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  dom  J  =  { u  e.  B  |  u  .<_  W } )
2824, 27sseqtr4d 3541 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  C_ 
dom  J )
29 dihglblem.g . . . . . 6  |-  G  =  ( glb `  K
)
3010, 14, 15, 29, 11, 2dihglblem2aN 36108 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  T  =/=  (/) )
31303adant3 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  T  =/=  (/) )
3229, 11, 25dibglbN 35981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( T  C_  dom  J  /\  T  =/=  (/) ) )  ->  ( J `  ( G `  T ) )  = 
|^|_ x  e.  T  ( J `  x ) )
331, 28, 31, 32syl12anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( J `  ( G `  T ) )  = 
|^|_ x  e.  T  ( J `  x ) )
3410, 14, 15, 29, 11, 2dihglblem2N 36109 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  B  /\  ( G `  S
)  .<_  W )  -> 
( G `  S
)  =  ( G `
 T ) )
35343adant2r 1223 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  =  ( G `  T ) )
3635fveq2d 5870 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( J `  ( G `  S ) )  =  ( J `  ( G `  T )
) )
37 simpl1 999 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
3824sselda 3504 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  x  e.  { u  e.  B  |  u  .<_  W }
)
39 breq1 4450 . . . . . . 7  |-  ( u  =  x  ->  (
u  .<_  W  <->  x  .<_  W ) )
4039elrab 3261 . . . . . 6  |-  ( x  e.  { u  e.  B  |  u  .<_  W }  <->  ( x  e.  B  /\  x  .<_  W ) )
4138, 40sylib 196 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  (
x  e.  B  /\  x  .<_  W ) )
42 dihglblem.ih . . . . . 6  |-  I  =  ( ( DIsoH `  K
) `  W )
4310, 14, 11, 42, 25dihvalb 36052 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( x  e.  B  /\  x  .<_  W ) )  ->  (
I `  x )  =  ( J `  x ) )
4437, 41, 43syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S )  .<_  W )  /\  x  e.  T )  ->  (
I `  x )  =  ( J `  x ) )
4544iineq2dv 4348 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  |^|_ x  e.  T  ( I `  x )  =  |^|_ x  e.  T  ( J `
 x ) )
4633, 36, 453eqtr4rd 2519 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  |^|_ x  e.  T  ( I `  x )  =  ( J `  ( G `
 S ) ) )
47 simp1l 1020 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  K  e.  HL )
48 hlclat 34173 . . . . 5  |-  ( K  e.  HL  ->  K  e.  CLat )
4947, 48syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  K  e.  CLat )
50 simp2l 1022 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  S  C_  B )
5110, 29clatglbcl 15601 . . . 4  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  ( G `  S )  e.  B )
5249, 50, 51syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  e.  B )
53 simp3 998 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  ( G `  S )  .<_  W )
5410, 14, 11, 42, 25dihvalb 36052 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 S )  e.  B  /\  ( G `
 S )  .<_  W ) )  -> 
( I `  ( G `  S )
)  =  ( J `
 ( G `  S ) ) )
551, 52, 53, 54syl12anc 1226 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( J `  ( G `  S )
) )
5635fveq2d 5870 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  S ) )  =  ( I `  ( G `  T )
) )
5746, 55, 563eqtr2rd 2515 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) )  /\  ( G `  S ) 
.<_  W )  ->  (
I `  ( G `  T ) )  = 
|^|_ x  e.  T  ( I `  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   {crab 2818    C_ wss 3476   (/)c0 3785   |^|_ciin 4326   class class class wbr 4447   dom cdm 4999   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   glbcglb 15430   meetcmee 15432   Latclat 15532   CLatccla 15594   HLchlt 34165   LHypclh 34798   DIsoBcdib 35953   DIsoHcdih 36043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973  df-disoa 35844  df-dib 35954  df-dih 36044
This theorem is referenced by:  dihglblem3aN  36111
  Copyright terms: Public domain W3C validator