Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglb2 Structured version   Unicode version

Theorem dihglb2 35083
Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dihglb.b  |-  B  =  ( Base `  K
)
dihglb.g  |-  G  =  ( glb `  K
)
dihglb.h  |-  H  =  ( LHyp `  K
)
dihglb.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihglb2.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihglb2.v  |-  V  =  ( Base `  U
)
Assertion
Ref Expression
dihglb2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( G `  {
x  e.  B  |  S  C_  ( I `  x ) } ) )  =  |^| { y  e.  ran  I  |  S  C_  y }
)
Distinct variable groups:    x, B    x, I    x, K    x, S, y    y, B    y, H    y, I    y, K   
y, S    y, V    y, W
Allowed substitution hints:    U( x, y)    G( x, y)    H( x)    V( x)    W( x)

Proof of Theorem dihglb2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 ssrab2 3458 . . . 4  |-  { x  e.  B  |  S  C_  ( I `  x
) }  C_  B
32a1i 11 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { x  e.  B  |  S  C_  ( I `  x
) }  C_  B
)
4 hlop 33103 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
54ad2antrr 725 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  K  e.  OP )
6 dihglb.b . . . . . . 7  |-  B  =  ( Base `  K
)
7 eqid 2443 . . . . . . 7  |-  ( 1.
`  K )  =  ( 1. `  K
)
86, 7op1cl 32926 . . . . . 6  |-  ( K  e.  OP  ->  ( 1. `  K )  e.  B )
95, 8syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( 1. `  K )  e.  B
)
10 simpr 461 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  S  C_  V
)
11 dihglb.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
12 dihglb.i . . . . . . . 8  |-  I  =  ( ( DIsoH `  K
) `  W )
13 dihglb2.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
14 dihglb2.v . . . . . . . 8  |-  V  =  ( Base `  U
)
157, 11, 12, 13, 14dih1 35027 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( I `  ( 1. `  K ) )  =  V )
1615adantr 465 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( 1. `  K
) )  =  V )
1710, 16sseqtr4d 3414 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  S  C_  (
I `  ( 1. `  K ) ) )
18 fveq2 5712 . . . . . . 7  |-  ( x  =  ( 1. `  K )  ->  (
I `  x )  =  ( I `  ( 1. `  K ) ) )
1918sseq2d 3405 . . . . . 6  |-  ( x  =  ( 1. `  K )  ->  ( S  C_  ( I `  x )  <->  S  C_  (
I `  ( 1. `  K ) ) ) )
2019elrab 3138 . . . . 5  |-  ( ( 1. `  K )  e.  { x  e.  B  |  S  C_  ( I `  x
) }  <->  ( ( 1. `  K )  e.  B  /\  S  C_  ( I `  ( 1. `  K ) ) ) )
219, 17, 20sylanbrc 664 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( 1. `  K )  e.  {
x  e.  B  |  S  C_  ( I `  x ) } )
22 ne0i 3664 . . . 4  |-  ( ( 1. `  K )  e.  { x  e.  B  |  S  C_  ( I `  x
) }  ->  { x  e.  B  |  S  C_  ( I `  x
) }  =/=  (/) )
2321, 22syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { x  e.  B  |  S  C_  ( I `  x
) }  =/=  (/) )
24 dihglb.g . . . 4  |-  G  =  ( glb `  K
)
256, 24, 11, 12dihglb 35082 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( { x  e.  B  |  S  C_  ( I `  x
) }  C_  B  /\  { x  e.  B  |  S  C_  ( I `
 x ) }  =/=  (/) ) )  -> 
( I `  ( G `  { x  e.  B  |  S  C_  ( I `  x
) } ) )  =  |^|_ z  e.  {
x  e.  B  |  S  C_  ( I `  x ) }  (
I `  z )
)
261, 3, 23, 25syl12anc 1216 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( G `  {
x  e.  B  |  S  C_  ( I `  x ) } ) )  =  |^|_ z  e.  { x  e.  B  |  S  C_  ( I `
 x ) }  ( I `  z
) )
27 fvex 5722 . . . 4  |-  ( I `
 z )  e. 
_V
2827dfiin2 4226 . . 3  |-  |^|_ z  e.  { x  e.  B  |  S  C_  ( I `
 x ) }  ( I `  z
)  =  |^| { y  |  E. z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) } y  =  ( I `
 z ) }
296, 11, 12dihfn 35009 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  I  Fn  B )
3029ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V )  /\  S  C_  y )  ->  I  Fn  B )
31 fvelrnb 5760 . . . . . . . . . . 11  |-  ( I  Fn  B  ->  (
y  e.  ran  I  <->  E. z  e.  B  ( I `  z )  =  y ) )
3230, 31syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V )  /\  S  C_  y )  ->  (
y  e.  ran  I  <->  E. z  e.  B  ( I `  z )  =  y ) )
33 eqcom 2445 . . . . . . . . . . . 12  |-  ( ( I `  z )  =  y  <->  y  =  ( I `  z
) )
3433rexbii 2761 . . . . . . . . . . 11  |-  ( E. z  e.  B  ( I `  z )  =  y  <->  E. z  e.  B  y  =  ( I `  z
) )
35 df-rex 2742 . . . . . . . . . . 11  |-  ( E. z  e.  B  y  =  ( I `  z )  <->  E. z
( z  e.  B  /\  y  =  (
I `  z )
) )
3634, 35bitri 249 . . . . . . . . . 10  |-  ( E. z  e.  B  ( I `  z )  =  y  <->  E. z
( z  e.  B  /\  y  =  (
I `  z )
) )
3732, 36syl6bb 261 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V )  /\  S  C_  y )  ->  (
y  e.  ran  I  <->  E. z ( z  e.  B  /\  y  =  ( I `  z
) ) ) )
3837ex 434 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( S  C_  y  ->  ( y  e.  ran  I  <->  E. z
( z  e.  B  /\  y  =  (
I `  z )
) ) ) )
3938pm5.32rd 640 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( (
y  e.  ran  I  /\  S  C_  y )  <-> 
( E. z ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) ) )
40 df-rex 2742 . . . . . . . 8  |-  ( E. z  e.  { x  e.  B  |  S  C_  ( I `  x
) } y  =  ( I `  z
)  <->  E. z ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  /\  y  =  ( I `  z ) ) )
41 fveq2 5712 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
I `  x )  =  ( I `  z ) )
4241sseq2d 3405 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( S  C_  ( I `  x )  <->  S  C_  (
I `  z )
) )
4342elrab 3138 . . . . . . . . . . 11  |-  ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  <->  ( z  e.  B  /\  S  C_  ( I `  z
) ) )
4443anbi1i 695 . . . . . . . . . 10  |-  ( ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  /\  y  =  ( I `  z ) )  <->  ( (
z  e.  B  /\  S  C_  ( I `  z ) )  /\  y  =  ( I `  z ) ) )
45 sseq2 3399 . . . . . . . . . . . 12  |-  ( y  =  ( I `  z )  ->  ( S  C_  y  <->  S  C_  (
I `  z )
) )
4645anbi2d 703 . . . . . . . . . . 11  |-  ( y  =  ( I `  z )  ->  (
( z  e.  B  /\  S  C_  y )  <-> 
( z  e.  B  /\  S  C_  ( I `
 z ) ) ) )
4746pm5.32ri 638 . . . . . . . . . 10  |-  ( ( ( z  e.  B  /\  S  C_  y )  /\  y  =  ( I `  z ) )  <->  ( ( z  e.  B  /\  S  C_  ( I `  z
) )  /\  y  =  ( I `  z ) ) )
48 an32 796 . . . . . . . . . 10  |-  ( ( ( z  e.  B  /\  S  C_  y )  /\  y  =  ( I `  z ) )  <->  ( ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) )
4944, 47, 483bitr2i 273 . . . . . . . . 9  |-  ( ( z  e.  { x  e.  B  |  S  C_  ( I `  x
) }  /\  y  =  ( I `  z ) )  <->  ( (
z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) )
5049exbii 1634 . . . . . . . 8  |-  ( E. z ( z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) }  /\  y  =  ( I `  z ) )  <->  E. z ( ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y ) )
51 19.41v 1920 . . . . . . . 8  |-  ( E. z ( ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y )  <->  ( E. z ( z  e.  B  /\  y  =  ( I `  z
) )  /\  S  C_  y ) )
5240, 50, 513bitrri 272 . . . . . . 7  |-  ( ( E. z ( z  e.  B  /\  y  =  ( I `  z ) )  /\  S  C_  y )  <->  E. z  e.  { x  e.  B  |  S  C_  ( I `
 x ) } y  =  ( I `
 z ) )
5339, 52syl6rbb 262 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( E. z  e.  { x  e.  B  |  S  C_  ( I `  x
) } y  =  ( I `  z
)  <->  ( y  e. 
ran  I  /\  S  C_  y ) ) )
5453abbidv 2563 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { y  |  E. z  e.  {
x  e.  B  |  S  C_  ( I `  x ) } y  =  ( I `  z ) }  =  { y  |  ( y  e.  ran  I  /\  S  C_  y ) } )
55 df-rab 2745 . . . . 5  |-  { y  e.  ran  I  |  S  C_  y }  =  { y  |  ( y  e.  ran  I  /\  S  C_  y ) }
5654, 55syl6eqr 2493 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  { y  |  E. z  e.  {
x  e.  B  |  S  C_  ( I `  x ) } y  =  ( I `  z ) }  =  { y  e.  ran  I  |  S  C_  y } )
5756inteqd 4154 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  |^| { y  |  E. z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) } y  =  ( I `
 z ) }  =  |^| { y  e.  ran  I  |  S  C_  y }
)
5828, 57syl5eq 2487 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  |^|_ z  e. 
{ x  e.  B  |  S  C_  ( I `
 x ) }  ( I `  z
)  =  |^| { y  e.  ran  I  |  S  C_  y }
)
5926, 58eqtrd 2475 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  C_  V
)  ->  ( I `  ( G `  {
x  e.  B  |  S  C_  ( I `  x ) } ) )  =  |^| { y  e.  ran  I  |  S  C_  y }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2429    =/= wne 2620   E.wrex 2737   {crab 2740    C_ wss 3349   (/)c0 3658   |^|cint 4149   |^|_ciin 4193   ran crn 4862    Fn wfn 5434   ` cfv 5439   Basecbs 14195   glbcglb 15134   1.cp1 15229   OPcops 32913   HLchlt 33091   LHypclh 33724   DVecHcdvh 34819   DIsoHcdih 34969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-riotaBAD 32700
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-tpos 6766  df-undef 6813  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-n0 10601  df-z 10668  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-sca 14275  df-vsca 14276  df-0g 14401  df-poset 15137  df-plt 15149  df-lub 15165  df-glb 15166  df-join 15167  df-meet 15168  df-p0 15230  df-p1 15231  df-lat 15237  df-clat 15299  df-mnd 15436  df-submnd 15486  df-grp 15566  df-minusg 15567  df-sbg 15568  df-subg 15699  df-cntz 15856  df-lsm 16156  df-cmn 16300  df-abl 16301  df-mgp 16614  df-ur 16626  df-rng 16669  df-oppr 16737  df-dvdsr 16755  df-unit 16756  df-invr 16786  df-dvr 16797  df-drng 16856  df-lmod 16972  df-lss 17036  df-lsp 17075  df-lvec 17206  df-lsatoms 32717  df-oposet 32917  df-ol 32919  df-oml 32920  df-covers 33007  df-ats 33008  df-atl 33039  df-cvlat 33063  df-hlat 33092  df-llines 33238  df-lplanes 33239  df-lvols 33240  df-lines 33241  df-psubsp 33243  df-pmap 33244  df-padd 33536  df-lhyp 33728  df-laut 33729  df-ldil 33844  df-ltrn 33845  df-trl 33899  df-tendo 34495  df-edring 34497  df-disoa 34770  df-dvech 34820  df-dib 34880  df-dic 34914  df-dih 34970
This theorem is referenced by:  dochval2  35093
  Copyright terms: Public domain W3C validator