Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglb Structured version   Unicode version

Theorem dihglb 35305
Description: Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dihglb.b  |-  B  =  ( Base `  K
)
dihglb.g  |-  G  =  ( glb `  K
)
dihglb.h  |-  H  =  ( LHyp `  K
)
dihglb.i  |-  I  =  ( ( DIsoH `  K
) `  W )
Assertion
Ref Expression
dihglb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  ( I `  ( G `  S ) )  =  |^|_ x  e.  S  ( I `  x ) )
Distinct variable groups:    x, B    x, I    x, K    x, S    x, G    x, H    x, W

Proof of Theorem dihglb
StepHypRef Expression
1 dihglb.b . 2  |-  B  =  ( Base `  K
)
2 eqid 2452 . 2  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2452 . 2  |-  ( meet `  K )  =  (
meet `  K )
4 eqid 2452 . 2  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 dihglb.g . 2  |-  G  =  ( glb `  K
)
6 dihglb.h . 2  |-  H  =  ( LHyp `  K
)
7 dihglb.i . 2  |-  I  =  ( ( DIsoH `  K
) `  W )
8 eqid 2452 . 2  |-  ( (
DVecH `  K ) `  W )  =  ( ( DVecH `  K ) `  W )
9 eqid 2452 . 2  |-  ( LSubSp `  ( ( DVecH `  K
) `  W )
)  =  ( LSubSp `  ( ( DVecH `  K
) `  W )
)
10 eqid 2452 . 2  |-  (LSAtoms `  (
( DVecH `  K ) `  W ) )  =  (LSAtoms `  ( ( DVecH `  K ) `  W ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dihglblem6 35304 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  ( I `  ( G `  S ) )  =  |^|_ x  e.  S  ( I `  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2645    C_ wss 3431   (/)c0 3740   |^|_ciin 4275   ` cfv 5521   Basecbs 14287   lecple 14359   glbcglb 15227   meetcmee 15229   LSubSpclss 17131  LSAtomsclsa 32938   Atomscatm 33227   HLchlt 33314   LHypclh 33947   DVecHcdvh 35042   DIsoHcdih 35192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-riotaBAD 32923
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-om 6582  df-1st 6682  df-2nd 6683  df-tpos 6850  df-undef 6897  df-recs 6937  df-rdg 6971  df-1o 7025  df-oadd 7029  df-er 7206  df-map 7321  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-n0 10686  df-z 10753  df-uz 10968  df-fz 11550  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-mulr 14366  df-sca 14368  df-vsca 14369  df-0g 14494  df-poset 15230  df-plt 15242  df-lub 15258  df-glb 15259  df-join 15260  df-meet 15261  df-p0 15323  df-p1 15324  df-lat 15330  df-clat 15392  df-mnd 15529  df-submnd 15579  df-grp 15659  df-minusg 15660  df-sbg 15661  df-subg 15792  df-cntz 15949  df-lsm 16251  df-cmn 16395  df-abl 16396  df-mgp 16709  df-ur 16721  df-rng 16765  df-oppr 16833  df-dvdsr 16851  df-unit 16852  df-invr 16882  df-dvr 16893  df-drng 16952  df-lmod 17068  df-lss 17132  df-lsp 17171  df-lvec 17302  df-lsatoms 32940  df-oposet 33140  df-ol 33142  df-oml 33143  df-covers 33230  df-ats 33231  df-atl 33262  df-cvlat 33286  df-hlat 33315  df-llines 33461  df-lplanes 33462  df-lvols 33463  df-lines 33464  df-psubsp 33466  df-pmap 33467  df-padd 33759  df-lhyp 33951  df-laut 33952  df-ldil 34067  df-ltrn 34068  df-trl 34122  df-tendo 34718  df-edring 34720  df-disoa 34993  df-dvech 35043  df-dib 35103  df-dic 35137  df-dih 35193
This theorem is referenced by:  dihglb2  35306  dihmeet  35307  dihintcl  35308
  Copyright terms: Public domain W3C validator