Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Structured version   Unicode version

Theorem dihffval 36027
Description: The isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
dihffval  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Distinct variable groups:    A, q    w, H    u, q, w, x, K
Allowed substitution hints:    A( x, w, u)    B( x, w, u, q)    H( x, u, q)    .\/ ( x, w, u, q)    .<_ ( x, w, u, q)    ./\ (
x, w, u, q)    V( x, w, u, q)

Proof of Theorem dihffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3122 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5864 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 dihval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2526 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5864 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
6 dihval.b . . . . . 6  |-  B  =  ( Base `  K
)
75, 6syl6eqr 2526 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
8 fveq2 5864 . . . . . . . 8  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
9 dihval.l . . . . . . . 8  |-  .<_  =  ( le `  K )
108, 9syl6eqr 2526 . . . . . . 7  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1110breqd 4458 . . . . . 6  |-  ( k  =  K  ->  (
x ( le `  k ) w  <->  x  .<_  w ) )
12 fveq2 5864 . . . . . . . 8  |-  ( k  =  K  ->  ( DIsoB `  k )  =  ( DIsoB `  K )
)
1312fveq1d 5866 . . . . . . 7  |-  ( k  =  K  ->  (
( DIsoB `  k ) `  w )  =  ( ( DIsoB `  K ) `  w ) )
1413fveq1d 5866 . . . . . 6  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  x )  =  ( ( ( DIsoB `  K
) `  w ) `  x ) )
15 fveq2 5864 . . . . . . . . 9  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
1615fveq1d 5866 . . . . . . . 8  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
1716fveq2d 5868 . . . . . . 7  |-  ( k  =  K  ->  ( LSubSp `
 ( ( DVecH `  k ) `  w
) )  =  (
LSubSp `  ( ( DVecH `  K ) `  w
) ) )
18 fveq2 5864 . . . . . . . . 9  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
19 dihval.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
2018, 19syl6eqr 2526 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
2110breqd 4458 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( le `  k ) w  <->  q  .<_  w ) )
2221notbid 294 . . . . . . . . . 10  |-  ( k  =  K  ->  ( -.  q ( le `  k ) w  <->  -.  q  .<_  w ) )
23 fveq2 5864 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
24 dihval.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
2523, 24syl6eqr 2526 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
26 eqidd 2468 . . . . . . . . . . . 12  |-  ( k  =  K  ->  q  =  q )
27 fveq2 5864 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
28 dihval.m . . . . . . . . . . . . . 14  |-  ./\  =  ( meet `  K )
2927, 28syl6eqr 2526 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
3029oveqd 6299 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
x ( meet `  k
) w )  =  ( x  ./\  w
) )
3125, 26, 30oveq123d 6303 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  ( q  .\/  (
x  ./\  w )
) )
3231eqeq1d 2469 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( q ( join `  k ) ( x ( meet `  k
) w ) )  =  x  <->  ( q  .\/  ( x  ./\  w
) )  =  x ) )
3322, 32anbi12d 710 . . . . . . . . 9  |-  ( k  =  K  ->  (
( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  <->  ( -.  q  .<_  w  /\  (
q  .\/  ( x  ./\  w ) )  =  x ) ) )
3416fveq2d 5868 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( LSSum `  ( ( DVecH `  k ) `  w
) )  =  (
LSSum `  ( ( DVecH `  K ) `  w
) ) )
35 fveq2 5864 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( DIsoC `  k )  =  ( DIsoC `  K )
)
3635fveq1d 5866 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
( DIsoC `  k ) `  w )  =  ( ( DIsoC `  K ) `  w ) )
3736fveq1d 5866 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoC `  k
) `  w ) `  q )  =  ( ( ( DIsoC `  K
) `  w ) `  q ) )
3813, 30fveq12d 5870 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) )  =  ( ( ( DIsoB `  K ) `  w ) `  (
x  ./\  w )
) )
3934, 37, 38oveq123d 6303 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) )  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) )
4039eqeq2d 2481 . . . . . . . . 9  |-  ( k  =  K  ->  (
u  =  ( ( ( ( DIsoC `  k
) `  w ) `  q ) ( LSSum `  ( ( DVecH `  k
) `  w )
) ( ( (
DIsoB `  k ) `  w ) `  (
x ( meet `  k
) w ) ) )  <->  u  =  (
( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) )
4133, 40imbi12d 320 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4220, 41raleqbidv 3072 . . . . . . 7  |-  ( k  =  K  ->  ( A. q  e.  ( Atoms `  k ) ( ( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4317, 42riotaeqbidv 6246 . . . . . 6  |-  ( k  =  K  ->  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k
) `  w )
) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) )  =  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4411, 14, 43ifbieq12d 3966 . . . . 5  |-  ( k  =  K  ->  if ( x ( le
`  k ) w ,  ( ( (
DIsoB `  k ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) )  =  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) )
457, 44mpteq12dv 4525 . . . 4  |-  ( k  =  K  ->  (
x  e.  ( Base `  k )  |->  if ( x ( le `  k ) w ,  ( ( ( DIsoB `  k ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )
464, 45mpteq12dv 4525 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
47 df-dih 36026 . . 3  |-  DIsoH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) ) )
48 fvex 5874 . . . . 5  |-  ( LHyp `  K )  e.  _V
493, 48eqeltri 2551 . . . 4  |-  H  e. 
_V
5049mptex 6129 . . 3  |-  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )  e.  _V
5146, 47, 50fvmpt 5948 . 2  |-  ( K  e.  _V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
521, 51syl 16 1  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   ` cfv 5586   iota_crio 6242  (class class class)co 6282   Basecbs 14483   lecple 14555   joincjn 15424   meetcmee 15425   LSSumclsm 16447   LSubSpclss 17358   Atomscatm 34060   LHypclh 34780   DVecHcdvh 35875   DIsoBcdib 35935   DIsoCcdic 35969   DIsoHcdih 36025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-dih 36026
This theorem is referenced by:  dihfval  36028
  Copyright terms: Public domain W3C validator