Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihffval Structured version   Visualization version   Unicode version

Theorem dihffval 34869
Description: The isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
dihffval  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Distinct variable groups:    A, q    w, H    u, q, w, x, K
Allowed substitution hints:    A( x, w, u)    B( x, w, u, q)    H( x, u, q)    .\/ ( x, w, u, q)    .<_ ( x, w, u, q)    ./\ (
x, w, u, q)    V( x, w, u, q)

Proof of Theorem dihffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3040 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5879 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 dihval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2523 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5879 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
6 dihval.b . . . . . 6  |-  B  =  ( Base `  K
)
75, 6syl6eqr 2523 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
8 fveq2 5879 . . . . . . . 8  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
9 dihval.l . . . . . . . 8  |-  .<_  =  ( le `  K )
108, 9syl6eqr 2523 . . . . . . 7  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1110breqd 4406 . . . . . 6  |-  ( k  =  K  ->  (
x ( le `  k ) w  <->  x  .<_  w ) )
12 fveq2 5879 . . . . . . . 8  |-  ( k  =  K  ->  ( DIsoB `  k )  =  ( DIsoB `  K )
)
1312fveq1d 5881 . . . . . . 7  |-  ( k  =  K  ->  (
( DIsoB `  k ) `  w )  =  ( ( DIsoB `  K ) `  w ) )
1413fveq1d 5881 . . . . . 6  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  x )  =  ( ( ( DIsoB `  K
) `  w ) `  x ) )
15 fveq2 5879 . . . . . . . . 9  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
1615fveq1d 5881 . . . . . . . 8  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
1716fveq2d 5883 . . . . . . 7  |-  ( k  =  K  ->  ( LSubSp `
 ( ( DVecH `  k ) `  w
) )  =  (
LSubSp `  ( ( DVecH `  K ) `  w
) ) )
18 fveq2 5879 . . . . . . . . 9  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
19 dihval.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
2018, 19syl6eqr 2523 . . . . . . . 8  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
2110breqd 4406 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( le `  k ) w  <->  q  .<_  w ) )
2221notbid 301 . . . . . . . . . 10  |-  ( k  =  K  ->  ( -.  q ( le `  k ) w  <->  -.  q  .<_  w ) )
23 fveq2 5879 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
24 dihval.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
2523, 24syl6eqr 2523 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
26 eqidd 2472 . . . . . . . . . . . 12  |-  ( k  =  K  ->  q  =  q )
27 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
28 dihval.m . . . . . . . . . . . . . 14  |-  ./\  =  ( meet `  K )
2927, 28syl6eqr 2523 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
3029oveqd 6325 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
x ( meet `  k
) w )  =  ( x  ./\  w
) )
3125, 26, 30oveq123d 6329 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  ( q  .\/  (
x  ./\  w )
) )
3231eqeq1d 2473 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( q ( join `  k ) ( x ( meet `  k
) w ) )  =  x  <->  ( q  .\/  ( x  ./\  w
) )  =  x ) )
3322, 32anbi12d 725 . . . . . . . . 9  |-  ( k  =  K  ->  (
( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  <->  ( -.  q  .<_  w  /\  (
q  .\/  ( x  ./\  w ) )  =  x ) ) )
3416fveq2d 5883 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( LSSum `  ( ( DVecH `  k ) `  w
) )  =  (
LSSum `  ( ( DVecH `  K ) `  w
) ) )
35 fveq2 5879 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( DIsoC `  k )  =  ( DIsoC `  K )
)
3635fveq1d 5881 . . . . . . . . . . . 12  |-  ( k  =  K  ->  (
( DIsoC `  k ) `  w )  =  ( ( DIsoC `  K ) `  w ) )
3736fveq1d 5881 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoC `  k
) `  w ) `  q )  =  ( ( ( DIsoC `  K
) `  w ) `  q ) )
3813, 30fveq12d 5885 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) )  =  ( ( ( DIsoB `  K ) `  w ) `  (
x  ./\  w )
) )
3934, 37, 38oveq123d 6329 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) )  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) )
4039eqeq2d 2481 . . . . . . . . 9  |-  ( k  =  K  ->  (
u  =  ( ( ( ( DIsoC `  k
) `  w ) `  q ) ( LSSum `  ( ( DVecH `  k
) `  w )
) ( ( (
DIsoB `  k ) `  w ) `  (
x ( meet `  k
) w ) ) )  <->  u  =  (
( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) )
4133, 40imbi12d 327 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4220, 41raleqbidv 2987 . . . . . . 7  |-  ( k  =  K  ->  ( A. q  e.  ( Atoms `  k ) ( ( -.  q ( le `  k ) w  /\  ( q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4317, 42riotaeqbidv 6273 . . . . . 6  |-  ( k  =  K  ->  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k
) `  w )
) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) )  =  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )
4411, 14, 43ifbieq12d 3899 . . . . 5  |-  ( k  =  K  ->  if ( x ( le
`  k ) w ,  ( ( (
DIsoB `  k ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) )  =  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) )
457, 44mpteq12dv 4474 . . . 4  |-  ( k  =  K  ->  (
x  e.  ( Base `  k )  |->  if ( x ( le `  k ) w ,  ( ( ( DIsoB `  k ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  k ) `  w ) ) A. q  e.  ( Atoms `  k ) ( ( -.  q ( le
`  k ) w  /\  ( q (
join `  k )
( x ( meet `  k ) w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w
) `  q )
( LSSum `  ( ( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )
464, 45mpteq12dv 4474 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
47 df-dih 34868 . . 3  |-  DIsoH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) ) )
48 fvex 5889 . . . . 5  |-  ( LHyp `  K )  e.  _V
493, 48eqeltri 2545 . . . 4  |-  H  e. 
_V
5049mptex 6152 . . 3  |-  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )  e.  _V
5146, 47, 50fvmpt 5963 . 2  |-  ( K  e.  _V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
521, 51syl 17 1  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   _Vcvv 3031   ifcif 3872   class class class wbr 4395    |-> cmpt 4454   ` cfv 5589   iota_crio 6269  (class class class)co 6308   Basecbs 15199   lecple 15275   joincjn 16267   meetcmee 16268   LSSumclsm 17364   LSubSpclss 18233   Atomscatm 32900   LHypclh 33620   DVecHcdvh 34717   DIsoBcdib 34777   DIsoCcdic 34811   DIsoHcdih 34867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-dih 34868
This theorem is referenced by:  dihfval  34870
  Copyright terms: Public domain W3C validator