Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihatexv2 Structured version   Unicode version

Theorem dihatexv2 37514
Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.)
Hypotheses
Ref Expression
dihatexv2.a  |-  A  =  ( Atoms `  K )
dihatexv2.h  |-  H  =  ( LHyp `  K
)
dihatexv2.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihatexv2.v  |-  V  =  ( Base `  U
)
dihatexv2.o  |-  .0.  =  ( 0g `  U )
dihatexv2.n  |-  N  =  ( LSpan `  U )
dihatexv2.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihatexv2.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
dihatexv2  |-  ( ph  ->  ( Q  e.  A  <->  E. x  e.  ( V 
\  {  .0.  }
) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
Distinct variable groups:    x, A    x, I    x, K    x, N    x, Q    x, V    x, W    ph, x
Allowed substitution hints:    U( x)    H( x)    .0. ( x)

Proof of Theorem dihatexv2
StepHypRef Expression
1 eqid 2392 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
2 dihatexv2.a . . . 4  |-  A  =  ( Atoms `  K )
31, 2atbase 35462 . . 3  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
43anim2i 567 . 2  |-  ( (
ph  /\  Q  e.  A )  ->  ( ph  /\  Q  e.  (
Base `  K )
) )
5 dihatexv2.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
65adantr 463 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 eldifi 3553 . . . . . . 7  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
8 dihatexv2.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
9 dihatexv2.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
10 dihatexv2.v . . . . . . . 8  |-  V  =  ( Base `  U
)
11 dihatexv2.n . . . . . . . 8  |-  N  =  ( LSpan `  U )
12 dihatexv2.i . . . . . . . 8  |-  I  =  ( ( DIsoH `  K
) `  W )
138, 9, 10, 11, 12dihlsprn 37506 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  x  e.  V
)  ->  ( N `  { x } )  e.  ran  I )
145, 7, 13syl2an 475 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( N `  { x } )  e.  ran  I )
151, 8, 12dihcnvcl 37446 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( N `  { x } )  e.  ran  I )  ->  ( `' I `  ( N `  {
x } ) )  e.  ( Base `  K
) )
166, 14, 15syl2anc 659 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( `' I `  ( N `
 { x }
) )  e.  (
Base `  K )
)
17 eleq1a 2475 . . . . 5  |-  ( ( `' I `  ( N `
 { x }
) )  e.  (
Base `  K )  ->  ( Q  =  ( `' I `  ( N `
 { x }
) )  ->  Q  e.  ( Base `  K
) ) )
1816, 17syl 16 . . . 4  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( Q  =  ( `' I `  ( N `  { x } ) )  ->  Q  e.  ( Base `  K )
) )
1918rexlimdva 2884 . . 3  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `  { x } ) )  ->  Q  e.  ( Base `  K ) ) )
2019imdistani 688 . 2  |-  ( (
ph  /\  E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `  { x } ) ) )  ->  ( ph  /\  Q  e.  ( Base `  K ) ) )
21 dihatexv2.o . . . 4  |-  .0.  =  ( 0g `  U )
225adantr 463 . . . 4  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simpr 459 . . . 4  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  Q  e.  ( Base `  K )
)
241, 2, 8, 9, 10, 21, 11, 12, 22, 23dihatexv 37513 . . 3  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( Q  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) ( I `  Q )  =  ( N `  { x } ) ) )
2522adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2622, 7, 13syl2an 475 . . . . . . 7  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( N `  {
x } )  e. 
ran  I )
278, 12dihcnvid2 37448 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( N `  { x } )  e.  ran  I )  ->  ( I `  ( `' I `  ( N `
 { x }
) ) )  =  ( N `  {
x } ) )
2825, 26, 27syl2anc 659 . . . . . 6  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( I `  ( `' I `  ( N `
 { x }
) ) )  =  ( N `  {
x } ) )
2928eqeq2d 2406 . . . . 5  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( ( I `  Q )  =  ( I `  ( `' I `  ( N `
 { x }
) ) )  <->  ( I `  Q )  =  ( N `  { x } ) ) )
30 simplr 753 . . . . . 6  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  ->  Q  e.  ( Base `  K ) )
3125, 26, 15syl2anc 659 . . . . . 6  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( `' I `  ( N `  { x } ) )  e.  ( Base `  K
) )
321, 8, 12dih11 37440 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  (
Base `  K )  /\  ( `' I `  ( N `  { x } ) )  e.  ( Base `  K
) )  ->  (
( I `  Q
)  =  ( I `
 ( `' I `  ( N `  {
x } ) ) )  <->  Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3325, 30, 31, 32syl3anc 1226 . . . . 5  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( ( I `  Q )  =  ( I `  ( `' I `  ( N `
 { x }
) ) )  <->  Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3429, 33bitr3d 255 . . . 4  |-  ( ( ( ph  /\  Q  e.  ( Base `  K
) )  /\  x  e.  ( V  \  {  .0.  } ) )  -> 
( ( I `  Q )  =  ( N `  { x } )  <->  Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3534rexbidva 2903 . . 3  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( E. x  e.  ( V  \  {  .0.  } ) ( I `  Q
)  =  ( N `
 { x }
)  <->  E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
3624, 35bitrd 253 . 2  |-  ( (
ph  /\  Q  e.  ( Base `  K )
)  ->  ( Q  e.  A  <->  E. x  e.  ( V  \  {  .0.  } ) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
374, 20, 36pm5.21nd 898 1  |-  ( ph  ->  ( Q  e.  A  <->  E. x  e.  ( V 
\  {  .0.  }
) Q  =  ( `' I `  ( N `
 { x }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836   E.wrex 2743    \ cdif 3399   {csn 3957   `'ccnv 4925   ran crn 4927   ` cfv 5509   Basecbs 14653   0gc0g 14866   LSpanclspn 17749   Atomscatm 35436   HLchlt 35523   LHypclh 36156   DVecHcdvh 37253   DIsoHcdih 37403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-cnex 9477  ax-resscn 9478  ax-1cn 9479  ax-icn 9480  ax-addcl 9481  ax-addrcl 9482  ax-mulcl 9483  ax-mulrcl 9484  ax-mulcom 9485  ax-addass 9486  ax-mulass 9487  ax-distr 9488  ax-i2m1 9489  ax-1ne0 9490  ax-1rid 9491  ax-rnegex 9492  ax-rrecex 9493  ax-cnre 9494  ax-pre-lttri 9495  ax-pre-lttrn 9496  ax-pre-ltadd 9497  ax-pre-mulgt0 9498  ax-riotaBAD 35132
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-pss 3418  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-tp 3962  df-op 3964  df-uni 4177  df-int 4213  df-iun 4258  df-iin 4259  df-br 4381  df-opab 4439  df-mpt 4440  df-tr 4474  df-eprel 4718  df-id 4722  df-po 4727  df-so 4728  df-fr 4765  df-we 4767  df-ord 4808  df-on 4809  df-lim 4810  df-suc 4811  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-om 6618  df-1st 6717  df-2nd 6718  df-tpos 6891  df-undef 6938  df-recs 6978  df-rdg 7012  df-1o 7066  df-oadd 7070  df-er 7247  df-map 7358  df-en 7454  df-dom 7455  df-sdom 7456  df-fin 7457  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-le 9563  df-sub 9738  df-neg 9739  df-nn 10471  df-2 10529  df-3 10530  df-4 10531  df-5 10532  df-6 10533  df-n0 10731  df-z 10800  df-uz 11020  df-fz 11612  df-struct 14655  df-ndx 14656  df-slot 14657  df-base 14658  df-sets 14659  df-ress 14660  df-plusg 14734  df-mulr 14735  df-sca 14737  df-vsca 14738  df-0g 14868  df-preset 15693  df-poset 15711  df-plt 15724  df-lub 15740  df-glb 15741  df-join 15742  df-meet 15743  df-p0 15805  df-p1 15806  df-lat 15812  df-clat 15874  df-mgm 16008  df-sgrp 16047  df-mnd 16057  df-submnd 16103  df-grp 16193  df-minusg 16194  df-sbg 16195  df-subg 16334  df-cntz 16491  df-lsm 16792  df-cmn 16936  df-abl 16937  df-mgp 17274  df-ur 17286  df-ring 17332  df-oppr 17404  df-dvdsr 17422  df-unit 17423  df-invr 17453  df-dvr 17464  df-drng 17530  df-lmod 17646  df-lss 17711  df-lsp 17750  df-lvec 17881  df-lsatoms 35149  df-oposet 35349  df-ol 35351  df-oml 35352  df-covers 35439  df-ats 35440  df-atl 35471  df-cvlat 35495  df-hlat 35524  df-llines 35670  df-lplanes 35671  df-lvols 35672  df-lines 35673  df-psubsp 35675  df-pmap 35676  df-padd 35968  df-lhyp 36160  df-laut 36161  df-ldil 36276  df-ltrn 36277  df-trl 36332  df-tendo 36929  df-edring 36931  df-disoa 37204  df-dvech 37254  df-dib 37314  df-dic 37348  df-dih 37404
This theorem is referenced by:  djhcvat42  37590
  Copyright terms: Public domain W3C validator