Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem0 Structured version   Visualization version   Unicode version

Theorem dih1dimatlem0 34967
Description: Lemma for dih1dimat 34969. (Contributed by NM, 11-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h  |-  H  =  ( LHyp `  K
)
dih1dimat.u  |-  U  =  ( ( DVecH `  K
) `  W )
dih1dimat.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dih1dimat.a  |-  A  =  (LSAtoms `  U )
dih1dimat.b  |-  B  =  ( Base `  K
)
dih1dimat.l  |-  .<_  =  ( le `  K )
dih1dimat.c  |-  C  =  ( Atoms `  K )
dih1dimat.p  |-  P  =  ( ( oc `  K ) `  W
)
dih1dimat.t  |-  T  =  ( ( LTrn `  K
) `  W )
dih1dimat.r  |-  R  =  ( ( trL `  K
) `  W )
dih1dimat.e  |-  E  =  ( ( TEndo `  K
) `  W )
dih1dimat.o  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
dih1dimat.d  |-  F  =  (Scalar `  U )
dih1dimat.j  |-  J  =  ( invr `  F
)
dih1dimat.v  |-  V  =  ( Base `  U
)
dih1dimat.m  |-  .x.  =  ( .s `  U )
dih1dimat.s  |-  S  =  ( LSubSp `  U )
dih1dimat.n  |-  N  =  ( LSpan `  U )
dih1dimat.z  |-  .0.  =  ( 0g `  U )
dih1dimat.g  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  ( ( ( J `  s
) `  f ) `  P ) )
Assertion
Ref Expression
dih1dimatlem0  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  (
( i  =  ( p `  G )  /\  p  e.  E
)  <->  ( ( i  e.  T  /\  p  e.  E )  /\  E. t  e.  E  (
i  =  ( t `
 f )  /\  p  =  ( t  o.  s ) ) ) ) )
Distinct variable groups:    .<_ , h    B, h    f, i, p, s, t, E    t, F    C, h    i, G, p, t    t, h, J   
f, N, s, t   
f, h, K, i, p, s, t    T, f, h, i, p, s, t    U, f, h, s, t    f, H, h, i, p, s, t   
f, V, i, p, s, t    f, W, h, i, p, s, t    f, I, s   
i, O, p, t    P, h    t,  .x.
Allowed substitution hints:    A( t, f, h, i, s, p)    B( t, f, i, s, p)    C( t, f, i, s, p)    P( t,
f, i, s, p)    R( t, f, h, i, s, p)    S( t,
f, h, i, s, p)    .x. ( f, h, i, s, p)    U( i, p)    E( h)    F( f, h, i, s, p)    G( f, h, s)    I( t, h, i, p)    J( f, i, s, p)    .<_ ( t, f, i, s, p)    N( h, i, p)    O( f, h, s)    V( h)    .0. ( t, f, h, i, s, p)

Proof of Theorem dih1dimatlem0
StepHypRef Expression
1 simprl 772 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
i  =  ( p `
 G ) )
2 simpl1 1033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
3 simprr 774 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  ->  p  e.  E )
4 dih1dimat.l . . . . . . . 8  |-  .<_  =  ( le `  K )
5 dih1dimat.c . . . . . . . 8  |-  C  =  ( Atoms `  K )
6 dih1dimat.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
7 dih1dimat.p . . . . . . . 8  |-  P  =  ( ( oc `  K ) `  W
)
84, 5, 6, 7lhpocnel2 33655 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( P  e.  C  /\  -.  P  .<_  W ) )
92, 8syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( P  e.  C  /\  -.  P  .<_  W ) )
10 simpl2r 1084 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
s  e.  E )
11 simpl3 1035 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
s  =/=  O )
12 dih1dimat.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
13 dih1dimat.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
14 dih1dimat.e . . . . . . . . . . 11  |-  E  =  ( ( TEndo `  K
) `  W )
15 dih1dimat.o . . . . . . . . . . 11  |-  O  =  ( h  e.  T  |->  (  _I  |`  B ) )
16 dih1dimat.u . . . . . . . . . . 11  |-  U  =  ( ( DVecH `  K
) `  W )
17 dih1dimat.d . . . . . . . . . . 11  |-  F  =  (Scalar `  U )
18 dih1dimat.j . . . . . . . . . . 11  |-  J  =  ( invr `  F
)
1912, 6, 13, 14, 15, 16, 17, 18tendoinvcl 34743 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  s  =/=  O
)  ->  ( ( J `  s )  e.  E  /\  ( J `  s )  =/=  O ) )
2019simpld 466 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  s  =/=  O
)  ->  ( J `  s )  e.  E
)
212, 10, 11, 20syl3anc 1292 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( J `  s
)  e.  E )
22 simpl2l 1083 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
f  e.  T )
236, 13, 14tendocl 34405 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( J `  s )  e.  E  /\  f  e.  T
)  ->  ( ( J `  s ) `  f )  e.  T
)
242, 21, 22, 23syl3anc 1292 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( ( J `  s ) `  f
)  e.  T )
254, 5, 6, 13ltrnel 33775 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( J `
 s ) `  f )  e.  T  /\  ( P  e.  C  /\  -.  P  .<_  W ) )  ->  ( (
( ( J `  s ) `  f
) `  P )  e.  C  /\  -.  (
( ( J `  s ) `  f
) `  P )  .<_  W ) )
262, 24, 9, 25syl3anc 1292 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( ( ( ( J `  s ) `
 f ) `  P )  e.  C  /\  -.  ( ( ( J `  s ) `
 f ) `  P )  .<_  W ) )
27 dih1dimat.g . . . . . . 7  |-  G  =  ( iota_ h  e.  T  ( h `  P
)  =  ( ( ( J `  s
) `  f ) `  P ) )
284, 5, 6, 13, 27ltrniotacl 34217 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  C  /\  -.  P  .<_  W )  /\  (
( ( ( J `
 s ) `  f ) `  P
)  e.  C  /\  -.  ( ( ( J `
 s ) `  f ) `  P
)  .<_  W ) )  ->  G  e.  T
)
292, 9, 26, 28syl3anc 1292 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  ->  G  e.  T )
306, 13, 14tendocl 34405 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  E  /\  G  e.  T
)  ->  ( p `  G )  e.  T
)
312, 3, 29, 30syl3anc 1292 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( p `  G
)  e.  T )
321, 31eqeltrd 2549 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
i  e.  T )
336, 14tendococl 34410 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  E  /\  ( J `  s
)  e.  E )  ->  ( p  o.  ( J `  s
) )  e.  E
)
342, 3, 21, 33syl3anc 1292 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( p  o.  ( J `  s )
)  e.  E )
35 simp1 1030 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  ( K  e.  HL  /\  W  e.  H ) )
3683ad2ant1 1051 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  ( P  e.  C  /\  -.  P  .<_  W ) )
37203adant2l 1286 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  ( J `  s )  e.  E )
38 simp2l 1056 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  f  e.  T )
3935, 37, 38, 23syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  (
( J `  s
) `  f )  e.  T )
4035, 39, 36, 25syl3anc 1292 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  (
( ( ( J `
 s ) `  f ) `  P
)  e.  C  /\  -.  ( ( ( J `
 s ) `  f ) `  P
)  .<_  W ) )
4135, 36, 40, 28syl3anc 1292 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  G  e.  T )
424, 5, 6, 13, 27ltrniotaval 34219 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  C  /\  -.  P  .<_  W )  /\  (
( ( ( J `
 s ) `  f ) `  P
)  e.  C  /\  -.  ( ( ( J `
 s ) `  f ) `  P
)  .<_  W ) )  ->  ( G `  P )  =  ( ( ( J `  s ) `  f
) `  P )
)
4335, 36, 40, 42syl3anc 1292 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  ( G `  P )  =  ( ( ( J `  s ) `
 f ) `  P ) )
444, 5, 6, 13cdlemd 33844 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  (
( J `  s
) `  f )  e.  T )  /\  ( P  e.  C  /\  -.  P  .<_  W )  /\  ( G `  P )  =  ( ( ( J `  s ) `  f
) `  P )
)  ->  G  =  ( ( J `  s ) `  f
) )
4535, 41, 39, 36, 43, 44syl311anc 1306 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  G  =  ( ( J `
 s ) `  f ) )
4645adantr 472 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  ->  G  =  ( ( J `  s ) `  f ) )
4746fveq2d 5883 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( p `  G
)  =  ( p `
 ( ( J `
 s ) `  f ) ) )
486, 13, 14tendocoval 34404 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  E  /\  ( J `
 s )  e.  E )  /\  f  e.  T )  ->  (
( p  o.  ( J `  s )
) `  f )  =  ( p `  ( ( J `  s ) `  f
) ) )
492, 3, 21, 22, 48syl121anc 1297 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( ( p  o.  ( J `  s
) ) `  f
)  =  ( p `
 ( ( J `
 s ) `  f ) ) )
5047, 1, 493eqtr4d 2515 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
i  =  ( ( p  o.  ( J `
 s ) ) `
 f ) )
51 coass 5361 . . . . 5  |-  ( ( p  o.  ( J `
 s ) )  o.  s )  =  ( p  o.  (
( J `  s
)  o.  s ) )
5212, 6, 13, 14, 15, 16, 17, 18tendolinv 34744 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  s  =/=  O
)  ->  ( ( J `  s )  o.  s )  =  (  _I  |`  T )
)
532, 10, 11, 52syl3anc 1292 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( ( J `  s )  o.  s
)  =  (  _I  |`  T ) )
5453coeq2d 5002 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( p  o.  (
( J `  s
)  o.  s ) )  =  ( p  o.  (  _I  |`  T ) ) )
556, 13, 14tendo1mulr 34409 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  E
)  ->  ( p  o.  (  _I  |`  T ) )  =  p )
562, 3, 55syl2anc 673 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( p  o.  (  _I  |`  T ) )  =  p )
5754, 56eqtrd 2505 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( p  o.  (
( J `  s
)  o.  s ) )  =  p )
5851, 57syl5req 2518 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  ->  p  =  ( (
p  o.  ( J `
 s ) )  o.  s ) )
59 fveq1 5878 . . . . . . 7  |-  ( t  =  ( p  o.  ( J `  s
) )  ->  (
t `  f )  =  ( ( p  o.  ( J `  s ) ) `  f ) )
6059eqeq2d 2481 . . . . . 6  |-  ( t  =  ( p  o.  ( J `  s
) )  ->  (
i  =  ( t `
 f )  <->  i  =  ( ( p  o.  ( J `  s
) ) `  f
) ) )
61 coeq1 4997 . . . . . . 7  |-  ( t  =  ( p  o.  ( J `  s
) )  ->  (
t  o.  s )  =  ( ( p  o.  ( J `  s ) )  o.  s ) )
6261eqeq2d 2481 . . . . . 6  |-  ( t  =  ( p  o.  ( J `  s
) )  ->  (
p  =  ( t  o.  s )  <->  p  =  ( ( p  o.  ( J `  s
) )  o.  s
) ) )
6360, 62anbi12d 725 . . . . 5  |-  ( t  =  ( p  o.  ( J `  s
) )  ->  (
( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) )  <->  ( i  =  ( ( p  o.  ( J `  s
) ) `  f
)  /\  p  =  ( ( p  o.  ( J `  s
) )  o.  s
) ) ) )
6463rspcev 3136 . . . 4  |-  ( ( ( p  o.  ( J `  s )
)  e.  E  /\  ( i  =  ( ( p  o.  ( J `  s )
) `  f )  /\  p  =  (
( p  o.  ( J `  s )
)  o.  s ) ) )  ->  E. t  e.  E  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )
6534, 50, 58, 64syl12anc 1290 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  ->  E. t  e.  E  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )
6632, 3, 65jca31 543 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  =  ( p `  G )  /\  p  e.  E ) )  -> 
( ( i  e.  T  /\  p  e.  E )  /\  E. t  e.  E  (
i  =  ( t `
 f )  /\  p  =  ( t  o.  s ) ) ) )
67 simp3r 1059 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  p  =  ( t  o.  s ) )
6867fveq1d 5881 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
p `  ( ( J `  s ) `  f ) )  =  ( ( t  o.  s ) `  (
( J `  s
) `  f )
) )
69 simp1l1 1123 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
70 simp2 1031 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  t  e.  E )
71 simpl2r 1084 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  -> 
s  e.  E )
72713ad2ant1 1051 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  s  e.  E )
736, 14tendococl 34410 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E  /\  s  e.  E
)  ->  ( t  o.  s )  e.  E
)
7469, 70, 72, 73syl3anc 1292 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
t  o.  s )  e.  E )
75 simp1l3 1125 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  s  =/=  O )
7669, 72, 75, 20syl3anc 1292 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  ( J `  s )  e.  E )
77 simpl2l 1083 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  -> 
f  e.  T )
78773ad2ant1 1051 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  f  e.  T )
796, 13, 14tendocoval 34404 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( t  o.  s )  e.  E  /\  ( J `
 s )  e.  E )  /\  f  e.  T )  ->  (
( ( t  o.  s )  o.  ( J `  s )
) `  f )  =  ( ( t  o.  s ) `  ( ( J `  s ) `  f
) ) )
8069, 74, 76, 78, 79syl121anc 1297 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
( ( t  o.  s )  o.  ( J `  s )
) `  f )  =  ( ( t  o.  s ) `  ( ( J `  s ) `  f
) ) )
81 coass 5361 . . . . . . . . 9  |-  ( ( t  o.  s )  o.  ( J `  s ) )  =  ( t  o.  (
s  o.  ( J `
 s ) ) )
8212, 6, 13, 14, 15, 16, 17, 18tendorinv 34745 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  s  =/=  O
)  ->  ( s  o.  ( J `  s
) )  =  (  _I  |`  T )
)
8369, 72, 75, 82syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
s  o.  ( J `
 s ) )  =  (  _I  |`  T ) )
8483coeq2d 5002 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
t  o.  ( s  o.  ( J `  s ) ) )  =  ( t  o.  (  _I  |`  T ) ) )
856, 13, 14tendo1mulr 34409 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  t  e.  E
)  ->  ( t  o.  (  _I  |`  T ) )  =  t )
8669, 70, 85syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
t  o.  (  _I  |`  T ) )  =  t )
8784, 86eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
t  o.  ( s  o.  ( J `  s ) ) )  =  t )
8881, 87syl5eq 2517 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
( t  o.  s
)  o.  ( J `
 s ) )  =  t )
8988fveq1d 5881 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
( ( t  o.  s )  o.  ( J `  s )
) `  f )  =  ( t `  f ) )
9068, 80, 893eqtr2rd 2512 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
t `  f )  =  ( p `  ( ( J `  s ) `  f
) ) )
91 simp3l 1058 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  i  =  ( t `  f ) )
9245adantr 472 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  ->  G  =  ( ( J `  s ) `  f ) )
93923ad2ant1 1051 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  G  =  ( ( J `
 s ) `  f ) )
9493fveq2d 5883 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  (
p `  G )  =  ( p `  ( ( J `  s ) `  f
) ) )
9590, 91, 943eqtr4d 2515 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  /\  t  e.  E  /\  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) )  ->  i  =  ( p `  G ) )
9695rexlimdv3a 2873 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( i  e.  T  /\  p  e.  E ) )  -> 
( E. t  e.  E  ( i  =  ( t `  f
)  /\  p  =  ( t  o.  s
) )  ->  i  =  ( p `  G ) ) )
9796impr 631 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( (
i  e.  T  /\  p  e.  E )  /\  E. t  e.  E  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) ) )  -> 
i  =  ( p `
 G ) )
98 simprlr 781 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( (
i  e.  T  /\  p  e.  E )  /\  E. t  e.  E  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) ) )  ->  p  e.  E )
9997, 98jca 541 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
f  e.  T  /\  s  e.  E )  /\  s  =/=  O
)  /\  ( (
i  e.  T  /\  p  e.  E )  /\  E. t  e.  E  ( i  =  ( t `  f )  /\  p  =  ( t  o.  s ) ) ) )  -> 
( i  =  ( p `  G )  /\  p  e.  E
) )
10066, 99impbida 850 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( f  e.  T  /\  s  e.  E )  /\  s  =/=  O )  ->  (
( i  =  ( p `  G )  /\  p  e.  E
)  <->  ( ( i  e.  T  /\  p  e.  E )  /\  E. t  e.  E  (
i  =  ( t `
 f )  /\  p  =  ( t  o.  s ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   E.wrex 2757   class class class wbr 4395    |-> cmpt 4454    _I cid 4749    |` cres 4841    o. ccom 4843   ` cfv 5589   iota_crio 6269   Basecbs 15199  Scalarcsca 15271   .scvsca 15272   lecple 15275   occoc 15276   0gc0g 15416   invrcinvr 17977   LSubSpclss 18233   LSpanclspn 18272  LSAtomsclsa 32611   Atomscatm 32900   HLchlt 32987   LHypclh 33620   LTrncltrn 33737   trLctrl 33795   TEndoctendo 34390   DVecHcdvh 34717   DIsoHcdih 34867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-riotaBAD 32589
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-tpos 6991  df-undef 7038  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-0g 15418  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-minusg 16752  df-mgp 17802  df-ur 17814  df-ring 17860  df-oppr 17929  df-dvdsr 17947  df-unit 17948  df-invr 17978  df-dvr 17989  df-drng 18055  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-llines 33134  df-lplanes 33135  df-lvols 33136  df-lines 33137  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624  df-laut 33625  df-ldil 33740  df-ltrn 33741  df-trl 33796  df-tendo 34393  df-edring 34395  df-dvech 34718
This theorem is referenced by:  dih1dimatlem  34968
  Copyright terms: Public domain W3C validator