MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  digit1 Structured version   Unicode version

Theorem digit1 12010
Description: Two ways to express the  K th digit in the decimal expansion of a number  A (when base  B  =  10). 
K  =  1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009.)
Assertion
Ref Expression
digit1  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  K  e.  NN )  ->  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B ^ K ) ) ) )

Proof of Theorem digit1
StepHypRef Expression
1 digit2 12009 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  K  e.  NN )  ->  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  =  ( ( |_
`  ( ( B ^ K )  x.  A ) )  -  ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) ) ) )
213coml 1194 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  NN  /\  A  e.  RR )  ->  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  =  ( ( |_
`  ( ( B ^ K )  x.  A ) )  -  ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) ) ) )
323expa 1187 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  =  ( ( |_ `  (
( B ^ K
)  x.  A ) )  -  ( B  x.  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) ) ) ) )
43oveq1d 6118 . . . 4  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  B )  mod  ( B ^ K
) )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A
) )  -  ( B  x.  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) ) ) )  mod  ( B ^ K ) ) )
5 nnre 10341 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
6 nnnn0 10598 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  NN0 )
7 reexpcl 11894 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  K  e.  NN0 )  -> 
( B ^ K
)  e.  RR )
85, 6, 7syl2an 477 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ K
)  e.  RR )
9 remulcl 9379 . . . . . . . 8  |-  ( ( ( B ^ K
)  e.  RR  /\  A  e.  RR )  ->  ( ( B ^ K )  x.  A
)  e.  RR )
108, 9sylan 471 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B ^ K )  x.  A )  e.  RR )
11 reflcl 11658 . . . . . . 7  |-  ( ( ( B ^ K
)  x.  A )  e.  RR  ->  ( |_ `  ( ( B ^ K )  x.  A ) )  e.  RR )
1210, 11syl 16 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( |_ `  ( ( B ^ K )  x.  A
) )  e.  RR )
13 nnrp 11012 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  RR+ )
1413ad2antrr 725 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  B  e.  RR+ )
1512, 14modcld 11726 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  e.  RR )
16 nnexpcl 11890 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN0 )  -> 
( B ^ K
)  e.  NN )
176, 16sylan2 474 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ K
)  e.  NN )
1817nnrpd 11038 . . . . . 6  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ K
)  e.  RR+ )
1918adantr 465 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( B ^ K )  e.  RR+ )
20 modge0 11729 . . . . . 6  |-  ( ( ( |_ `  (
( B ^ K
)  x.  A ) )  e.  RR  /\  B  e.  RR+ )  -> 
0  <_  ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod 
B ) )
2112, 14, 20syl2anc 661 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  0  <_  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B ) )
225ad2antrr 725 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  B  e.  RR )
238adantr 465 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( B ^ K )  e.  RR )
24 modlt 11730 . . . . . . 7  |-  ( ( ( |_ `  (
( B ^ K
)  x.  A ) )  e.  RR  /\  B  e.  RR+ )  -> 
( ( |_ `  ( ( B ^ K )  x.  A
) )  mod  B
)  <  B )
2512, 14, 24syl2anc 661 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  <  B
)
26 nncn 10342 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  CC )
27 exp1 11883 . . . . . . . . . 10  |-  ( B  e.  CC  ->  ( B ^ 1 )  =  B )
2826, 27syl 16 . . . . . . . . 9  |-  ( B  e.  NN  ->  ( B ^ 1 )  =  B )
2928adantr 465 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ 1 )  =  B )
305adantr 465 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  B  e.  RR )
31 nnge1 10360 . . . . . . . . . 10  |-  ( B  e.  NN  ->  1  <_  B )
3231adantr 465 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  1  <_  B )
33 simpr 461 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  K  e.  NN )
34 nnuz 10908 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3533, 34syl6eleq 2533 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  K  e.  ( ZZ>= ` 
1 ) )
36 leexp2a 11931 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  1  <_  B  /\  K  e.  ( ZZ>= `  1 )
)  ->  ( B ^ 1 )  <_ 
( B ^ K
) )
3730, 32, 35, 36syl3anc 1218 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ 1 )  <_  ( B ^ K ) )
3829, 37eqbrtrrd 4326 . . . . . . 7  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  B  <_  ( B ^ K ) )
3938adantr 465 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  B  <_  ( B ^ K ) )
4015, 22, 23, 25, 39ltletrd 9543 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  <  ( B ^ K ) )
41 modid 11744 . . . . 5  |-  ( ( ( ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  e.  RR  /\  ( B ^ K
)  e.  RR+ )  /\  ( 0  <_  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  /\  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  <  ( B ^ K ) ) )  ->  ( (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  mod  ( B ^ K ) )  =  ( ( |_ `  ( ( B ^ K )  x.  A
) )  mod  B
) )
4215, 19, 21, 40, 41syl22anc 1219 . . . 4  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  B )  mod  ( B ^ K
) )  =  ( ( |_ `  (
( B ^ K
)  x.  A ) )  mod  B ) )
43 simpll 753 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  B  e.  NN )
44 nnm1nn0 10633 . . . . . . . . 9  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
45 reexpcl 11894 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( K  -  1
)  e.  NN0 )  ->  ( B ^ ( K  -  1 ) )  e.  RR )
465, 44, 45syl2an 477 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ ( K  -  1 ) )  e.  RR )
47 remulcl 9379 . . . . . . . 8  |-  ( ( ( B ^ ( K  -  1 ) )  e.  RR  /\  A  e.  RR )  ->  ( ( B ^
( K  -  1 ) )  x.  A
)  e.  RR )
4846, 47sylan 471 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B ^ ( K  - 
1 ) )  x.  A )  e.  RR )
49 nnexpcl 11890 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  ( K  -  1
)  e.  NN0 )  ->  ( B ^ ( K  -  1 ) )  e.  NN )
5044, 49sylan2 474 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ ( K  -  1 ) )  e.  NN )
5150adantr 465 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( B ^
( K  -  1 ) )  e.  NN )
52 modmulnn 11737 . . . . . . 7  |-  ( ( B  e.  NN  /\  ( ( B ^
( K  -  1 ) )  x.  A
)  e.  RR  /\  ( B ^ ( K  -  1 ) )  e.  NN )  -> 
( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B  x.  ( B ^
( K  -  1 ) ) ) )  <_  ( ( |_
`  ( B  x.  ( ( B ^
( K  -  1 ) )  x.  A
) ) )  mod  ( B  x.  ( B ^ ( K  - 
1 ) ) ) ) )
5343, 48, 51, 52syl3anc 1218 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B  x.  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) ) )  mod  ( B  x.  ( B ^ ( K  - 
1 ) ) ) )  <_  ( ( |_ `  ( B  x.  ( ( B ^
( K  -  1 ) )  x.  A
) ) )  mod  ( B  x.  ( B ^ ( K  - 
1 ) ) ) ) )
54 expm1t 11904 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  K  e.  NN )  ->  ( B ^ K
)  =  ( ( B ^ ( K  -  1 ) )  x.  B ) )
55 expcl 11895 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  ( K  -  1
)  e.  NN0 )  ->  ( B ^ ( K  -  1 ) )  e.  CC )
5644, 55sylan2 474 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  K  e.  NN )  ->  ( B ^ ( K  -  1 ) )  e.  CC )
57 simpl 457 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  K  e.  NN )  ->  B  e.  CC )
5856, 57mulcomd 9419 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  K  e.  NN )  ->  ( ( B ^
( K  -  1 ) )  x.  B
)  =  ( B  x.  ( B ^
( K  -  1 ) ) ) )
5954, 58eqtrd 2475 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  K  e.  NN )  ->  ( B ^ K
)  =  ( B  x.  ( B ^
( K  -  1 ) ) ) )
6026, 59sylan 471 . . . . . . . 8  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ K
)  =  ( B  x.  ( B ^
( K  -  1 ) ) ) )
6160adantr 465 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( B ^ K )  =  ( B  x.  ( B ^ ( K  - 
1 ) ) ) )
6261oveq2d 6119 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B  x.  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) ) )  mod  ( B ^ K
) )  =  ( ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) )  mod  ( B  x.  ( B ^ ( K  -  1 ) ) ) ) )
6361oveq1d 6118 . . . . . . . . 9  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B ^ K )  x.  A )  =  ( ( B  x.  ( B ^ ( K  - 
1 ) ) )  x.  A ) )
6426ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  B  e.  CC )
6526, 44, 55syl2an 477 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  K  e.  NN )  ->  ( B ^ ( K  -  1 ) )  e.  CC )
6665adantr 465 . . . . . . . . . 10  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( B ^
( K  -  1 ) )  e.  CC )
67 recn 9384 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  A  e.  CC )
6867adantl 466 . . . . . . . . . 10  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  A  e.  CC )
6964, 66, 68mulassd 9421 . . . . . . . . 9  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B  x.  ( B ^
( K  -  1 ) ) )  x.  A )  =  ( B  x.  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )
7063, 69eqtrd 2475 . . . . . . . 8  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B ^ K )  x.  A )  =  ( B  x.  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )
7170fveq2d 5707 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( |_ `  ( ( B ^ K )  x.  A
) )  =  ( |_ `  ( B  x.  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) ) )
7271, 61oveq12d 6121 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K
) )  =  ( ( |_ `  ( B  x.  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) )  mod  ( B  x.  ( B ^ ( K  -  1 ) ) ) ) )
7353, 62, 723brtr4d 4334 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( B  x.  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) ) )  mod  ( B ^ K
) )  <_  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  ( B ^ K ) ) )
74 reflcl 11658 . . . . . . . 8  |-  ( ( ( B ^ ( K  -  1 ) )  x.  A )  e.  RR  ->  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) )  e.  RR )
7548, 74syl 16 . . . . . . 7  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) )  e.  RR )
76 remulcl 9379 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) )  e.  RR )  -> 
( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) )  e.  RR )
7722, 75, 76syl2anc 661 . . . . . 6  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  e.  RR )
78 modsubdir 11779 . . . . . 6  |-  ( ( ( |_ `  (
( B ^ K
)  x.  A ) )  e.  RR  /\  ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) )  e.  RR  /\  ( B ^ K )  e.  RR+ )  ->  ( ( ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) )  mod  ( B ^ K ) )  <_ 
( ( |_ `  ( ( B ^ K )  x.  A
) )  mod  ( B ^ K ) )  <-> 
( ( ( |_
`  ( ( B ^ K )  x.  A ) )  -  ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) ) )  mod  ( B ^ K ) )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B ^ K ) ) ) ) )
7912, 77, 19, 78syl3anc 1218 . . . . 5  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( ( B  x.  ( |_
`  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) )  mod  ( B ^ K ) )  <_ 
( ( |_ `  ( ( B ^ K )  x.  A
) )  mod  ( B ^ K ) )  <-> 
( ( ( |_
`  ( ( B ^ K )  x.  A ) )  -  ( B  x.  ( |_ `  ( ( B ^ ( K  - 
1 ) )  x.  A ) ) ) )  mod  ( B ^ K ) )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B ^ K ) ) ) ) )
8073, 79mpbid 210 . . . 4  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  -  ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) ) )  mod  ( B ^ K ) )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B ^ K ) ) ) )
814, 42, 803eqtr3d 2483 . . 3  |-  ( ( ( B  e.  NN  /\  K  e.  NN )  /\  A  e.  RR )  ->  ( ( |_
`  ( ( B ^ K )  x.  A ) )  mod 
B )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A
) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^
( K  -  1 ) )  x.  A
) ) )  mod  ( B ^ K
) ) ) )
82813impa 1182 . 2  |-  ( ( B  e.  NN  /\  K  e.  NN  /\  A  e.  RR )  ->  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B ^ K ) ) ) )
83823comr 1195 1  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  K  e.  NN )  ->  (
( |_ `  (
( B ^ K
)  x.  A ) )  mod  B )  =  ( ( ( |_ `  ( ( B ^ K )  x.  A ) )  mod  ( B ^ K ) )  -  ( ( B  x.  ( |_ `  ( ( B ^ ( K  -  1 ) )  x.  A ) ) )  mod  ( B ^ K ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4304   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    x. cmul 9299    < clt 9430    <_ cle 9431    - cmin 9607   NNcn 10334   NN0cn0 10591   ZZ>=cuz 10873   RR+crp 11003   |_cfl 11652    mod cmo 11720   ^cexp 11877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator