MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp Structured version   Unicode version

Theorem difxp 5262
Description: Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp  |-  ( ( C  X.  D ) 
\  ( A  X.  B ) )  =  ( ( ( C 
\  A )  X.  D )  u.  ( C  X.  ( D  \  B ) ) )

Proof of Theorem difxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3483 . . 3  |-  ( ( C  X.  D ) 
\  ( A  X.  B ) )  C_  ( C  X.  D
)
2 relxp 4947 . . 3  |-  Rel  ( C  X.  D )
3 relss 4927 . . 3  |-  ( ( ( C  X.  D
)  \  ( A  X.  B ) )  C_  ( C  X.  D
)  ->  ( Rel  ( C  X.  D
)  ->  Rel  ( ( C  X.  D ) 
\  ( A  X.  B ) ) ) )
41, 2, 3mp2 9 . 2  |-  Rel  (
( C  X.  D
)  \  ( A  X.  B ) )
5 relxp 4947 . . 3  |-  Rel  (
( C  \  A
)  X.  D )
6 relxp 4947 . . 3  |-  Rel  ( C  X.  ( D  \  B ) )
7 relun 4956 . . 3  |-  ( Rel  ( ( ( C 
\  A )  X.  D )  u.  ( C  X.  ( D  \  B ) ) )  <-> 
( Rel  ( ( C  \  A )  X.  D )  /\  Rel  ( C  X.  ( D  \  B ) ) ) )
85, 6, 7mpbir2an 911 . 2  |-  Rel  (
( ( C  \  A )  X.  D
)  u.  ( C  X.  ( D  \  B ) ) )
9 ianor 488 . . . . . 6  |-  ( -.  ( x  e.  A  /\  y  e.  B
)  <->  ( -.  x  e.  A  \/  -.  y  e.  B )
)
109anbi2i 694 . . . . 5  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  -.  (
x  e.  A  /\  y  e.  B )
)  <->  ( ( x  e.  C  /\  y  e.  D )  /\  ( -.  x  e.  A  \/  -.  y  e.  B
) ) )
11 andi 862 . . . . 5  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( -.  x  e.  A  \/  -.  y  e.  B
) )  <->  ( (
( x  e.  C  /\  y  e.  D
)  /\  -.  x  e.  A )  \/  (
( x  e.  C  /\  y  e.  D
)  /\  -.  y  e.  B ) ) )
1210, 11bitri 249 . . . 4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  -.  (
x  e.  A  /\  y  e.  B )
)  <->  ( ( ( x  e.  C  /\  y  e.  D )  /\  -.  x  e.  A
)  \/  ( ( x  e.  C  /\  y  e.  D )  /\  -.  y  e.  B
) ) )
13 opelxp 4869 . . . . 5  |-  ( <.
x ,  y >.  e.  ( C  X.  D
)  <->  ( x  e.  C  /\  y  e.  D ) )
14 opelxp 4869 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
1514notbii 296 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  ( A  X.  B
)  <->  -.  ( x  e.  A  /\  y  e.  B ) )
1613, 15anbi12i 697 . . . 4  |-  ( (
<. x ,  y >.  e.  ( C  X.  D
)  /\  -.  <. x ,  y >.  e.  ( A  X.  B ) )  <->  ( ( x  e.  C  /\  y  e.  D )  /\  -.  ( x  e.  A  /\  y  e.  B
) ) )
17 opelxp 4869 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( ( C  \  A )  X.  D
)  <->  ( x  e.  ( C  \  A
)  /\  y  e.  D ) )
18 eldif 3338 . . . . . . . 8  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
1918anbi1i 695 . . . . . . 7  |-  ( ( x  e.  ( C 
\  A )  /\  y  e.  D )  <->  ( ( x  e.  C  /\  -.  x  e.  A
)  /\  y  e.  D ) )
20 an32 796 . . . . . . 7  |-  ( ( ( x  e.  C  /\  -.  x  e.  A
)  /\  y  e.  D )  <->  ( (
x  e.  C  /\  y  e.  D )  /\  -.  x  e.  A
) )
2119, 20bitri 249 . . . . . 6  |-  ( ( x  e.  ( C 
\  A )  /\  y  e.  D )  <->  ( ( x  e.  C  /\  y  e.  D
)  /\  -.  x  e.  A ) )
2217, 21bitri 249 . . . . 5  |-  ( <.
x ,  y >.  e.  ( ( C  \  A )  X.  D
)  <->  ( ( x  e.  C  /\  y  e.  D )  /\  -.  x  e.  A )
)
23 eldif 3338 . . . . . . 7  |-  ( y  e.  ( D  \  B )  <->  ( y  e.  D  /\  -.  y  e.  B ) )
2423anbi2i 694 . . . . . 6  |-  ( ( x  e.  C  /\  y  e.  ( D  \  B ) )  <->  ( x  e.  C  /\  (
y  e.  D  /\  -.  y  e.  B
) ) )
25 opelxp 4869 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( C  X.  ( D  \  B ) )  <-> 
( x  e.  C  /\  y  e.  ( D  \  B ) ) )
26 anass 649 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  -.  y  e.  B )  <->  ( x  e.  C  /\  (
y  e.  D  /\  -.  y  e.  B
) ) )
2724, 25, 263bitr4i 277 . . . . 5  |-  ( <.
x ,  y >.  e.  ( C  X.  ( D  \  B ) )  <-> 
( ( x  e.  C  /\  y  e.  D )  /\  -.  y  e.  B )
)
2822, 27orbi12i 521 . . . 4  |-  ( (
<. x ,  y >.  e.  ( ( C  \  A )  X.  D
)  \/  <. x ,  y >.  e.  ( C  X.  ( D 
\  B ) ) )  <->  ( ( ( x  e.  C  /\  y  e.  D )  /\  -.  x  e.  A
)  \/  ( ( x  e.  C  /\  y  e.  D )  /\  -.  y  e.  B
) ) )
2912, 16, 283bitr4i 277 . . 3  |-  ( (
<. x ,  y >.  e.  ( C  X.  D
)  /\  -.  <. x ,  y >.  e.  ( A  X.  B ) )  <->  ( <. x ,  y >.  e.  ( ( C  \  A
)  X.  D )  \/  <. x ,  y
>.  e.  ( C  X.  ( D  \  B ) ) ) )
30 eldif 3338 . . 3  |-  ( <.
x ,  y >.  e.  ( ( C  X.  D )  \  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  ( C  X.  D )  /\  -.  <.
x ,  y >.  e.  ( A  X.  B
) ) )
31 elun 3497 . . 3  |-  ( <.
x ,  y >.  e.  ( ( ( C 
\  A )  X.  D )  u.  ( C  X.  ( D  \  B ) ) )  <-> 
( <. x ,  y
>.  e.  ( ( C 
\  A )  X.  D )  \/  <. x ,  y >.  e.  ( C  X.  ( D 
\  B ) ) ) )
3229, 30, 313bitr4i 277 . 2  |-  ( <.
x ,  y >.  e.  ( ( C  X.  D )  \  ( A  X.  B ) )  <->  <. x ,  y >.  e.  ( ( ( C 
\  A )  X.  D )  u.  ( C  X.  ( D  \  B ) ) ) )
334, 8, 32eqrelriiv 4934 1  |-  ( ( C  X.  D ) 
\  ( A  X.  B ) )  =  ( ( ( C 
\  A )  X.  D )  u.  ( C  X.  ( D  \  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    \ cdif 3325    u. cun 3326    C_ wss 3328   <.cop 3883    X. cxp 4838   Rel wrel 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-opab 4351  df-xp 4846  df-rel 4847
This theorem is referenced by:  difxp1  5263  difxp2  5264  evlslem4OLD  17590  evlslem4  17591  txcld  19176
  Copyright terms: Public domain W3C validator