MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundi Structured version   Unicode version

Theorem difundi 3722
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  i^i  ( A  \  C ) )

Proof of Theorem difundi
StepHypRef Expression
1 dfun3 3708 . . 3  |-  ( B  u.  C )  =  ( _V  \  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
21difeq2i 3577 . 2  |-  ( A 
\  ( B  u.  C ) )  =  ( A  \  ( _V  \  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) ) )
3 inindi 3676 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  i^i  ( A  i^i  ( _V  \  C ) ) )
4 dfin2 3706 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( A  \  ( _V  \  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) ) )
5 invdif 3711 . . . 4  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
6 invdif 3711 . . . 4  |-  ( A  i^i  ( _V  \  C ) )  =  ( A  \  C
)
75, 6ineq12i 3659 . . 3  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( A  i^i  ( _V  \  C ) ) )  =  ( ( A  \  B
)  i^i  ( A  \  C ) )
83, 4, 73eqtr3i 2457 . 2  |-  ( A 
\  ( _V  \ 
( ( _V  \  B )  i^i  ( _V  \  C ) ) ) )  =  ( ( A  \  B
)  i^i  ( A  \  C ) )
92, 8eqtri 2449 1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  i^i  ( A  \  C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437   _Vcvv 3078    \ cdif 3430    u. cun 3431    i^i cin 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ral 2778  df-rab 2782  df-v 3080  df-dif 3436  df-un 3438  df-in 3440
This theorem is referenced by:  undm  3728  uncld  20033  inmbl  22472  difuncomp  28146  clsun  30970  poimirlem8  31856
  Copyright terms: Public domain W3C validator