MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difun1 Structured version   Unicode version

Theorem difun1 3676
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
Assertion
Ref Expression
difun1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)

Proof of Theorem difun1
StepHypRef Expression
1 inass 3615 . . . 4  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( _V  \  C ) )  =  ( A  i^i  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
2 invdif 3657 . . . 4  |-  ( ( A  i^i  ( _V 
\  B ) )  i^i  ( _V  \  C ) )  =  ( ( A  i^i  ( _V  \  B ) )  \  C )
31, 2eqtr3i 2452 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( ( A  i^i  ( _V  \  B ) )  \  C )
4 undm 3674 . . . . 5  |-  ( _V 
\  ( B  u.  C ) )  =  ( ( _V  \  B )  i^i  ( _V  \  C ) )
54ineq2i 3604 . . . 4  |-  ( A  i^i  ( _V  \ 
( B  u.  C
) ) )  =  ( A  i^i  (
( _V  \  B
)  i^i  ( _V  \  C ) ) )
6 invdif 3657 . . . 4  |-  ( A  i^i  ( _V  \ 
( B  u.  C
) ) )  =  ( A  \  ( B  u.  C )
)
75, 6eqtr3i 2452 . . 3  |-  ( A  i^i  ( ( _V 
\  B )  i^i  ( _V  \  C
) ) )  =  ( A  \  ( B  u.  C )
)
83, 7eqtr3i 2452 . 2  |-  ( ( A  i^i  ( _V 
\  B ) ) 
\  C )  =  ( A  \  ( B  u.  C )
)
9 invdif 3657 . . 3  |-  ( A  i^i  ( _V  \  B ) )  =  ( A  \  B
)
109difeq1i 3522 . 2  |-  ( ( A  i^i  ( _V 
\  B ) ) 
\  C )  =  ( ( A  \  B )  \  C
)
118, 10eqtr3i 2452 1  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437   _Vcvv 3022    \ cdif 3376    u. cun 3377    i^i cin 3378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ral 2719  df-rab 2723  df-v 3024  df-dif 3382  df-un 3384  df-in 3386
This theorem is referenced by:  dif32  3679  difabs  3680  difpr  4082  infdiffi  8115  mreexexlem4d  15496  nulmbl2  22432  unmbl  22433  caragenuncllem  38184
  Copyright terms: Public domain W3C validator