Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnb Structured version   Unicode version

Theorem difsnb 4174
 Description: equals if and only if is not a member of . Generalization of difsn 4166. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 4166 . 2
2 neldifsnd 4160 . . . . 5
3 nelne1 2786 . . . . 5
42, 3mpdan 668 . . . 4
54necomd 2728 . . 3
65necon2bi 2694 . 2
71, 6impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 184   wceq 1395   wcel 1819   wne 2652   cdif 3468  csn 4032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3474  df-sn 4033 This theorem is referenced by:  difsnpss  4175  incexclem  13660  mrieqv2d  15056  mreexmrid  15060  mreexexlem2d  15062  mreexexlem4d  15064  acsfiindd  15934
 Copyright terms: Public domain W3C validator